Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 141))

Abstract

Wavelets are functions that satisfy certain requirements. The very name wavelet comes from the requirement that they should integrate to zero, “waving” above and below the x-axis. The diminutive connotation of wavelet suggest the function has to be well localized. Other requirements are technical and needed mostly to ensure quick and easy calculation of the direct and inverse wavelet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Daubechies, I. (1988), Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math., 41(7), 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992), Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Donoho, D. (1993). Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Data. Proceedings of Symposia in Applied Mathematics, American Mathematical Society. Vol. 47, 173–205.

    MathSciNet  Google Scholar 

  • Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81,3, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho D., and Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90, 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D., Johnstone, I., Kerkyacharian, G, and Picard, D. (1995). Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. Ser. B, 57,2, 301–369.

    MathSciNet  MATH  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Nason, G. (1996). Wavelet regression by cross-validation. J. Roy. Statist. Soc. Ser. B, 58, 463–479.

    MathSciNet  MATH  Google Scholar 

  • Saito N. (1994). Simultaneous noise suppression and signal compression using a library of orthonormal bases and the minimum description length criterion. In: Wavelets in Geophysics, Foufoula-Georgiou and Kumar (eds.), Academic Press.

    Google Scholar 

  • Wang, Y. (1996). Function estimation via wavelet shrinkage for long-memory data, Ann. Statist., 24,2, 466–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Wickerhauser, M. V. (1994). Adapted Wavelet Analysis from Theory to Software, A K Peters, Ltd.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vidakovic, B., Müller, P. (1999). An Introduction to Wavelets. In: Müller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics, vol 141. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0567-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0567-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98885-6

  • Online ISBN: 978-1-4612-0567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics