Skip to main content

Fatty Acids as Trophic and Chemical Markers in Freshwater Ecosystems

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

The elucidation of trophic relationships and the identification of sources and sinks of organic matter are important steps for understanding the dynamics of aquatic ecosystems (Pimm et al., 1991). The trophic relationships between aquatic organisms can be investigated in a number of ways, from the inspection of gut contents to the use of biochemical, immunological (Grisley and Boyle, 1985), and stable isotope analyses (Peterson and Fry, 1987). Some lipid species (fatty acids, fatty alcohols, hydrocarbons, and sterols) are limited to certain taxa, so if the lipid in question is metabolically stable (or retains its basic structure after consumption), it may be used to trace energy transfers through the food chain, thus helping to define predator—prey relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R.G.; Burgher, R.D. Cod liver oil: component fatty acids as determined by gasliquid chromatography. J. Fish. Res. Bd. Can. 21:319–326; 1964.

    CAS  Google Scholar 

  • Ackman, R.G.; Takeuchi, T. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar. Lipids 21:117–120; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ackman, R.G.; Manzer, A.; Joseph, J.D. Tentative identification of an unusual naturally-occurring polyenoic fatty acid by calculation from precision open-tubular GLC and structural element retention data. Chromatographia 7:107–114; 1974.

    Article  CAS  Google Scholar 

  • Ackman, R.G.; Eaton, C.A.; Litchfield, C. Composition of wax esters, triglycerides and diacyl glyceryl ethers in the jaw and blubber fats of the Amazon River dolphin (Irma geoffrensis). Lipids 6:69–77; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Ackman, R.G.; Tocher, C.S.; McLachlan, J. Marine phytoplankter fatty acids. J. Fish. Res. Bd. Can. 25:1603–1620; 1968.

    Article  CAS  Google Scholar 

  • Ahlgren, G.; Gustafsson, I-B.; Boberg, M. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50; 1992.

    Article  CAS  Google Scholar 

  • Ahlgren, G.; Lundstedt, L.; Brett, M.; Forsberg, C. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818; 1990.

    Article  CAS  Google Scholar 

  • Armstrong, F.A.J.; Williams, P.M.; Strickland, J.D.H. Photo-oxidation of organic matter in sea water by ultraviolet radiation, analytical and other applications. Nature 211:481–483; 1966.

    Article  CAS  Google Scholar 

  • Barnes, M.A.; Barnes, W.C. Organic compounds in lake sediments. In: Lerman, A., ed. Lakes. Chemistry, Geology, Physics. New York: Springer-Verlag; 1978:p. 127–152.

    Google Scholar 

  • Beach, D.H.; Harrington, G.W.; Holtz, C.G. The polyunsaturated fatty acids of marine and freshwater Cryptomonads. J. Protozool. 17:501–510; 1970.

    CAS  Google Scholar 

  • Bell, J.G.; Guioni, C.; Sargent, J.R. Fatty acid composition of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): a comparison with commercial diets. Aquaculture 128:301–313; 1994.

    Article  CAS  Google Scholar 

  • Bell, M.V.; Henderson, R.J.; Sargent, J.R. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 83B:711–719; 1986.

    CAS  Google Scholar 

  • Bishop, D.G.; Bain, J.N.; Downton, J.S. Ultrastructure and lipid composition of zooxanthellae from Tridacna maxima. Aust. J. Plant Physiol. 3:33–40; 1976.

    CAS  Google Scholar 

  • Boon, P.I.; Virtue, P.; Nichols, P.D. Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwat. Res. 47:27–41; 1996.

    Article  CAS  Google Scholar 

  • Bottino, N.R.. The fatty acids of Antarctic phytoplankton and euphausids. Fatty acid exchange among trophic levels of the Ross Sea. Mar. Biol. 27:197–204; 1974.

    CAS  Google Scholar 

  • Bourbonniere, R.A.; Meyers, P.A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41:352–359; 1996.

    Google Scholar 

  • Bourdier, G.A.; Amblard, C.A. Variabilités verticaux et temporelles des acides gras d’un phytoplancton lacustre au cours d’un cycle nycthemeral. Hydrobiologia 157:57–68; 1988.

    Article  CAS  Google Scholar 

  • Bourdier, G.A.; Amblard, C.A. Evolution de la composition en acides gras d’un phy-toplancton lacustre (Lac Pavin, France). Int. Rev. Ges. Hydrobiol. 72:81–95; 1987.

    Article  CAS  Google Scholar 

  • Bourdier, G.A.; Amblard, C.A. Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J. Plankton Res. 11:1201–1212; 1989.

    Article  CAS  Google Scholar 

  • Brown, M.R.; Jeffrey, S.W. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161:91–113; 1992.

    Article  CAS  Google Scholar 

  • Carpenter, E.J.; Harvey, R.H., Fry, B.; Capone, D.G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. 44:27–38; 1997.

    Article  CAS  Google Scholar 

  • Caudales, R.; Moreau, R.A.; Wells J. M. Cellular lipid and fatty acid compositions of cyanobionts from Azolla caroliniana. Symbiosis 14:191–200; 1992.

    Google Scholar 

  • Cavigelli, M.A.; Robertson, G.P.; Klug, M.J. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113; 1995.

    Article  CAS  Google Scholar 

  • Chan, M.; Himes, R.H.; Akagi, J.M. Fatty acid composition of thermophilic, mesophilic and psychrophilic clostridia. J. Bacteriol. 106:876–881; 1971.

    PubMed  CAS  Google Scholar 

  • Christie, W.W. Lipid Analysis. Oxford: Pergamon Press; 1982.

    Google Scholar 

  • Christie, W.W. The composition, structure and function of lipids in tissues of ruminant animals. In: Christie, W.W., ed. Lipid Metabolism in Ruminant Animals. Oxford: Pergamon Press; 1981:p. 95–91.

    Google Scholar 

  • Chuecas, L.; Riley, J.P. Component fatty acids of the total lipids of some marine phytoplankton. J. Mar. Biol. Assn. U.K. 49:97–116; 1969.

    Article  CAS  Google Scholar 

  • Clarke, A.; Lesley, J.H.; Hopkins, C.C.E. Lipid in an Antarctic food chain: Calanus, Bolinopsis, Berne. Sarsia 72:41–48; 1987.

    CAS  Google Scholar 

  • Conte, M.H.; Thompson, A.; Eglinton, G. Primary production of lipid biomarker compounds by Emiliania huxleyi. Results from an experimental mesocosm study in fjords of Southwestern Norway. Sarsia 79:319–331; 1994.

    Google Scholar 

  • Cosper, C.I; Vining, L.C.; Ackman, R.G. Sources of cyclopropanoid fatty acids in the mummichog Fundulus heteroclitus. Mar. Biol. 78:139–146; 1984.

    Article  CAS  Google Scholar 

  • Cranwell, P.A.; Jaworski, G.H.M.; Bickley, H.M. Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151; 1990.

    Article  CAS  Google Scholar 

  • Cranwell, P.A.; Creghton, M.E.; Jaworski, G.H.M. Lipids of four species of freshwater chrysophytes. Phytochemistry 27:1053–1059; 1988.

    Article  CAS  Google Scholar 

  • Dadd, R.H. Essential fatty acids: insects and vertebrate compared. In: Mittler, T.E.; Dadd, R.H., eds. Metabolic Aspects of Lipids Nutrition in Insects. Boulder, CO: Westview Press; 1983:p. 107–147.

    Google Scholar 

  • DeLong, E.F.; Yayanos, A.A. Biochemical function and ecological significance of novel bacterial lipids in deep sea procaryotes. Appl. Environ. Microbiol. 51:730–737; 1986.

    PubMed  CAS  Google Scholar 

  • Dembitsky, V.M.; Rozentsvet, O.A. Distribution of polar lipids in some marine, brackish and freshwater green macrophytes. Phytochemistry 41:483–488; 1996.

    Article  CAS  Google Scholar 

  • Desvilettes, C.; Bourdier, G.; Breton, J.C.; Combrouze, P. Fatty acids as organic markers for the study of trophic relationships in littoral cladoceran communities of a pond. J. Plankton Res. 16:643–659; 1994.

    Article  Google Scholar 

  • Dobson, G.; Ward, D.M., Robinson, N.; Eglinton, G. Biogeochemistry of hot spring environments: extractable lipids of cyanobacterial mats. Chem. Geol. 68:155–179; 1988.

    Article  CAS  Google Scholar 

  • Douce, R.; Joyard, J.; Block, M.A.; Dorne, A-J.; Harwood, J.L.; Bowyer, J.R. Glycolipid analyses and synthesis in plastids. In: Harwood, J.L.; Bowyer, J.R., eds. Methods in Plant Biochemistry. vol.4. 1990:p. 471–503.

    Google Scholar 

  • Dunlop-Jones, N.; Jialing, H.; Allen, L.H. An analysis of the acetone extractives of the wood and bark from fresh trembling aspen:implications for deresination and pitch control. J. Pulp Paper Sci. 17:J60—J66; 1991.

    Google Scholar 

  • Findlay, R.H.; Dobbs, F.C. Quantitative description of microbial communities using lipid analysis. In: Kemp, P.F.; Sherr, B.F.; Sherr, E.B.; Cole, J.J., eds. Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publisher; 1993a:p. 271–284.

    Google Scholar 

  • Findlay, R.H.; Dobbs, F.C. Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance. In: Kemp, P.F.; Sherr, B.F.; Sherr, E.B.; Cole, J.J., eds. Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publisher; 1993b:p. 347–358.

    Google Scholar 

  • Fredrickson, H.L.; Cappenberg, T.E.; Leeuw, J.W. Polar lipid ester-linked fatty acids com-position of Lake Vechten seston: an ecological application of lipid analysis. FEMS Microbiol. Ecol. 38:381–396; 1986.

    Article  CAS  Google Scholar 

  • Fukushima, K; Kondo, H.; Sakata, S. Geochemistry of hydroxy acids in sediments. 1. Some freshwater and brackish water lakes in Japan. Organic Geochem. 18:913–922; 1992.

    Article  CAS  Google Scholar 

  • Galliard, T. Degradation of acyl lipids: hydrolytic and oxidative enzymes. In: Stumpf, P.K., ed. The Biochemistry of Plants. Lipids: Structure and Function. New York: Academic Press; 1980:p. 85–119.

    Google Scholar 

  • Gonzalez-Baro, M.; Pollero. R.J. Lipid characterization and distribution among tissues of the freshwater crustacean Macrobrachium borellii during an annual cycle. Comp. Biochem Physiol. 91B:711–715; 1988.

    CAS  Google Scholar 

  • Gillan, F.T.; Johns, R.B. Chemical markers for marine bacteria: fatty acids and pigments. In: Johns, R.B., ed. Biological Markers in the Sedimentary Record. Methods in Geochemistry and Geophysics, vol. 8. Amsterdam: Elsevier; 1986:p. 291–309.

    Google Scholar 

  • Goodloe, R.S.; Light, R.J. Structure and composition of hydrocarbons and fatty acids from a marine blue-green Synechococcus sp. Biochem. Biophys. Acta 710:485–492; 1982.

    Article  CAS  Google Scholar 

  • Grisley, M.S., Boyle, P.R. A new application of serological techniques to gut content analysis. J. Exp. Mar. Biol. Ecol. 90:1–9; 1985.

    Article  Google Scholar 

  • Haack, S.K.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60:2483–2493; 1994.

    PubMed  CAS  Google Scholar 

  • Hama, T.; Matsunaga, K.; Handa, N.; Takahashi, M. Fatty acid composition in photosynthetic products of natural phytoplankton population in Lake Biwa, Japan. J. Plankton Res. 14:1055–1065: 1992.

    Article  CAS  Google Scholar 

  • Hanson, B.J.; Cummings, K.W.; Cargill, A.S.; Lowry, R.R. Lipid content, fatty acid composition, and the effect of diet on fats of aquatic insects. Comp. Biochem. Physiol. 80B:257–276; 1985.

    CAS  Google Scholar 

  • Henderson, R.J.; Sargent, J.R. Lipid biosynthesis in rainbow trout, Salmo gairdnerii, fed diets of differing lipid content. Comp. Biochem. Physiol. 69C:31–37; 1981.

    CAS  Google Scholar 

  • Henderson, R.J.; Tocher, R.D. The lipid composition and biochemistry of freshwater fish.Prog. Lipid Res. 26:281–347; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Holton, R.W.; Blecker, H.H.; Stevens, T.S. Fatty acids in blue-green algae, possible relationships to phylogenetic position. Science 160:545–547; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J.D. Identification of 3,6,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10:395–403; 1977.

    Article  Google Scholar 

  • Kaitaranta, J.K.; Linko, R.R. Fatty acid in the roe lipids of common food fishes. Comp. Biochem. Physiol. 79B:331–334; 1984.

    CAS  Google Scholar 

  • Käkelä, R. Fatty acid compositions in subspecies of ringed seal (Phoca hispida) and several semiaquatic mammals: site-specific and dietary differences. Ph.D. thesis, University of Joensuu, Finland; 1996.

    Google Scholar 

  • Käkelä, R.; Hyvärinen, H. Fatty acids in extremity tissues of Finnish beavers (Castor canadensis and Castor fiber) and muskrats (Ondatra zibethicus). Comp. Biochem. Physiol. 113B:113–124; 1996.

    Google Scholar 

  • Käkelä, R.; Hyvärinen, H.; Vainiotalo, P. Unusual fatty acids in the depot fat of the Canadian Beaver (Castor canadensis). Comp. Biochem. Physiol. 113B:625–629; 1996.

    Google Scholar 

  • Käkelä, R.; Ackman, R.G.; Hyvärinen, H. Very long chain polyunsaturated fatty acids in the blubber of ringed seals (Phoca hispida sp.) from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen. Lipids 30:725–731; 1995.

    Article  PubMed  Google Scholar 

  • Käkelä, R.; Hyvärinen, H.; Vainiotalo, P. Fatty acid composition in liver and blubber of the Saimaa ringed seal (Phoca hispida saimensis) compared with that of the ringed seal (Phoca hispida botnica) and grey seal (Halichoerus grypus) from the Baltic. Comp. Biochem. Physiol. 105B:553–565; 1993.

    Google Scholar 

  • Kates, M.; Volcani, B.E. Lipid compositions of diatoms. Biochim. Biophys. Acta 116:264278; 1966.

    Google Scholar 

  • Kawamura, K.A.; Kaplan, I.R. Organic compounds in the rainwater of Los Angeles. Environ. Sci. Technol. 17:497–501; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K.; Ishiwatari, R; Ogura, K. Early diagenesis of organic matter in the water column and sediments: microbial degradation and resynthesis of lipids in Lake Haruna. Org. Geochem. 11:251–264; 1987.

    Article  CAS  Google Scholar 

  • Kenyon, C.N. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109:827–834; 1972.

    PubMed  CAS  Google Scholar 

  • Kenyon, C.N.; Rippka, R.; Stainier, R.Y. Fatty acid composition and physiological proper-ties of some filamentous blue-green algae. Arch. Microbiol. 83:216–236; 1972.

    CAS  Google Scholar 

  • Komagata, K.; Suzuki, K-I. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol. 19:161–207; 1987.

    Article  CAS  Google Scholar 

  • Landry, W.L. Identification of Vibrio vulnificus by cellular fatty acid composition using the Hewlett-Packard 5898A microbial identification system: collaborative study. J. AOAC Int. 77:1492–1499; 1994.

    PubMed  CAS  Google Scholar 

  • Lechevalier, H.; Lechevalier, M.P. Chemotaxonomic use of lipids—an overview. In: Ratledge, C.; Wilkinson, S.G., eds. Microbial Lipids. New York: Academic Press; 1988:p. 869–902.

    Google Scholar 

  • Lechevalier, M.P. Lipids in bacterial taxonomy. In: Laskin, A.I.; Lechevalier, H.A., eds. CRC Handbook of Microbiology. Boca Raton, FL: CRC Press, Inc.; 1982:p. 435–541.

    Google Scholar 

  • Leger, C.; Fremont, L.; Boudon, M. Fatty acid composition of the lipids in the trout—I. Influence of dietary fatty acids on the triglyceride fatty acid desaturation in serum, adipose tissue, liver, white and red muscle. Comp. Biochem. Physiol. 69B:99–105; 1981.

    CAS  Google Scholar 

  • Linko, R.R.; Rajasilta, M.; Hiltunen, R. Comparison of lipids and fatty acids composition in vendace (Coregonus albula L.) and available plankton feed. Comp. Biochem. Physiol. 103A:205–212; 1992.

    Article  CAS  Google Scholar 

  • McIntire, C.D.; Tinsley, I.J. Lowry, R.R. Fatty acids in lotic periphyton: another measure of community structure. J. Phycol. 5:26–32; 1969.

    Article  CAS  Google Scholar 

  • Mancuso, C.A.; Franzmann, P.D.; Burton, H.R.; Nichols, P.D. Microbial community structure and biomass estimate of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb. Ecol. 19:73–95; 1990.

    Article  CAS  Google Scholar 

  • Mermoud, F.; Clerc, C.; Guelacar, F.O.; Buchs, A. Free fatty acids and sterols in the plankton of Lake Leman. Arch. Sci. Genève 34:367–374; 1981.

    CAS  Google Scholar 

  • Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry—an overview if indicators of organic matter sources and diagenesis in lake sediments. Organic Geochem. 20:867–900; 1993.

    Article  CAS  Google Scholar 

  • Meyers, P.A.; Leenheer, M.J.; Eadie, B.J.; Maule, S.J. Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochim. Cosmochim. Acta 48:443–452; 1984.

    Article  CAS  Google Scholar 

  • Miyazaki, T. Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Arch. Hydrobiol. 99:1–14; 1983.

    CAS  Google Scholar 

  • Miyazaki, T.; Irie, J.; Ogawa, T.; Ichimura, S.E. Fatty acids in lipids from particulate organic matter in a eutrophie lake, Lake Nakanuma, Japan. Int. Rev. Ges. Hydrobiol. 71:101–113; 1986.

    Article  CAS  Google Scholar 

  • Moss, C.W. The use of cellular fatty acids for identification of microorganisms. In: Fox, A.; Morgan, S.L.; Larson, L.; Odham, G., eds. Analytical Microbiology Methods. Chromatography and Mass Spectrometry. New York: Plenum Press; 1990:p. 59–69.

    Google Scholar 

  • Muje, P.; Agren, J.J.; Lindqvist, O.V.; Hanninen, O. Fatty acid composition of Vendace (Coregonus alhula L.) muscle and its plankton fed. Comp. Biochem. Physiol. 92B:75–79; 1989.

    CAS  Google Scholar 

  • Murata, N.; Wada, H.; Gombos, Z. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol. 33:933–941; 1992.

    CAS  Google Scholar 

  • Napolitano, G.E.; Shantha, N.C.; Hill, W.R.; Luttrell, A.E. Lipid and fatty acid compositions of stream periphyton and stoneroller minnows (Campostoma anomalum): trophic and environmental implications. Arch. Hydrobiol. 137:211–225; 1996.

    CAS  Google Scholar 

  • Napolitano, G.E.; Heras, H.; Stewart, A.J. Fatty acid composition of freshwater phy-toplankton during a red tide event. Biochem. Syst. Ecol. 23:65–69; 1995.

    Article  CAS  Google Scholar 

  • Napolitano, G.E. The relationship of lipids with light and chlorophyll measurements in freshwater algae and periphyton. J. Phycol. 30:943–950; 1994.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Hill, W.R.; Guckert, J.B.; Stewart, A.J.; Nold, S.C.; White, D.C. Changes in periphyton fatty acid composition in chlorine polluted streams. J. North Am. Benthol. Soc. 13:237–249; 1994.

    Article  Google Scholar 

  • Napolitano, G.E.; Ratnayake, W.N.M.; Ackman, R.G. All-cis-3,6.9, l 2,15-octadecapentaenoic acid: a problem of resolution in the GC analysis of marine fatty acids. Phytochemistry 27:1751–1755; 1988.

    Article  CAS  Google Scholar 

  • Nevenzel, J. Biogenic hydrocarbons in marine organisms. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats and Oils. Boca Raton, FL: CRC Press; 1989:p. 3–71.

    Google Scholar 

  • Nichols, B.W. Light-induced changes in the lipids of Chlorella vulgaris. Biochim. Biophys. Acta 106:274–279; 1965.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, B.W.; Appleby. R.S. The distribution and synthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915; 1969.

    Article  CAS  Google Scholar 

  • Nichols, B.W.; Wood, B.J.B.; James, A.T. The occurrence and biosynthesis of gammalinolenic acid in a blue-green algae Spirulina platensis. Lipids 3:46–50; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, P.D.; Klump, D.W.; Johns, R.B. Lipid components and utilization in consumers of a seagrass community: an indicator of carbon source. Comp. Biochem. Physiol. 83B:103–113; 1986.

    CAS  Google Scholar 

  • Orcutt, D.M.; Parker, B.C.; Lusby, W.R. Lipids of blue-green algal mats (modern stromatolites) from Antarctic Oasis Lakes. J. Phycol. 22:523–530; 1986.

    Article  CAS  Google Scholar 

  • Patterson, G.W. Sterols of algae. In: Patterson, G.W.; Nes, W.D., eds. Physiology and Biochemistry of Sterols. Champaign, IL: American Oil Chemists’ Society; 1991:p. 118–157.

    Google Scholar 

  • Parker, P.L.; Van Baalen, C.; Maurer, L. Fatty acids of eleven species of blue-green algae: geochemical significance. Science 155:707–708; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Parkes, R.J. Analysis of microbial communities within sediments using biomarkers. In: Fletcher, M.; Gray, T.R.G.; Jones, J.G., eds. Ecology of Microbial Communities. London: Cambridge University Press; 1987:p. 147–177.

    Google Scholar 

  • Parrish, C.C.; DeFreitas, A.S.W.; Bodennec, G.; MacPherson, E.J.; Ackman, R.G. Lipid composition of the toxic marine diatom, Nitzschia pungens. Phytochemistry 30:113–116; 1991.

    Article  CAS  Google Scholar 

  • Peng, A.C. Fatty acids in vegetables and vegetable products. In: Chow, C.K., ed. Fatty Acids in Foods and Their Health Implications. New York: Marcel Decker; 1992:p. 185–236.

    Google Scholar 

  • Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320; 1987.

    Article  Google Scholar 

  • Petkov, G.D.; Furnadzieva, S.T. Non-polar lipids of some microalgae. Arch. Hydrobiol. 96:79–84; 1993.

    CAS  Google Scholar 

  • Pimm, S.L.; Lawton, J.H.; Cohen, J.E. Food web patterns and their consequences. Nature 350:669–674; 1991.

    Article  Google Scholar 

  • Pohl, P.; Zurheide, F. Fat production in freshwater and marine algae. In: Marine Algae in Pharmaceutical Science. New York: Walter de Gruyter; 1982:p. 64–80.

    Google Scholar 

  • Ratledge, C.; Wilkinson, S.G. Microbial Lipids. London, Academic Press; 1988.

    Google Scholar 

  • Ray, P.H.; White, D.C.; Brock, T.D. Effect of temperature on the fatty acid composition of Thermus aquaticus. J. Bacteriol. 106:25–30; 1971.

    PubMed  CAS  Google Scholar 

  • Rezanka, T. Very long chain fatty acids from the animal and plant kingdoms. Prog. Lipid Res. 28:147–187; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rhead, M.M.; Eglinton, G.; Draffan, G.H.; England, P.J. Conversion of oleic acid to saturated fatty acids in seven estuary sediments. Nature 232:327–330; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Rieman, B. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Environ. Microbiol. 50:187–193; 1985.

    Google Scholar 

  • Ringo, E.; Jostensen, J.P.; Olsen, R.E. Production of eicosapentaenoic acid by freshwater Vibrio. Lipids 27:564–566; 1992.

    Article  Google Scholar 

  • Sabot, A.; Laureillard, J.; Scribe, P.; Sicre, M.A. Evolutionary trends in the lipid biomarker approach for investigating the biogeochemistry of organic matter in the marine environment. Mar. Chem. 36:233–248; 1991.

    Google Scholar 

  • Sargent, J.R. The structure, metabolism and function of lipids in marine organisms. In: Malins, D.; Sargent, J.R., eds. Biochemical and Biophysical Perspectives in Marine Biology. New York: Academic Press; 1976:p. 149–212.

    Google Scholar 

  • Scholz, O.; Boon, P.I. Biofilms on submerged River Red gum (Eucalyptus camaldulensis Dehnh, Myrtaceae) wood in billabongs: an analysis of bacterial assemblages using phospholipid profiles. Hydrobiologia 259:169–178; 1993.

    Article  Google Scholar 

  • Sicko-Goad, L.; Simmons, M.L.; Lazinsky, D.; Hall, J. Effect of light cycle on diatom fatty acid composition and quantitative morphology. J. Phycol. 24:1–7; 1988.

    Article  CAS  Google Scholar 

  • Smith, P.F. Archaebacteria and other specialized bacteria. In: Microbial Lipids. London: Academic Press; 1988:p. 489–547.

    Google Scholar 

  • Smith, R.J.; Hobson, K.A.; Koopman, H.N.; Lavigne, D.M. Distinguishing between populations of fresh-and salt-water harbour seals (Phoca vitulina) using stable-isotope ratios and fatty acid profiles. Can. J. Fish. Aquat. Sci. 53:272–279; 1996.

    Article  Google Scholar 

  • Stead, D.E.; Sellwood, J.E.; Wilson, J.; Viney, I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol. 72:315–321; 1992.

    Article  Google Scholar 

  • Steinman, A.D.; McIntire, C.D.; Lowry, R.R. Effects of irradiance and age on the chemical constituents of algal assemblages in laboratory streams. Arch. Hydrobiol. 114:45–61; 1988.

    CAS  Google Scholar 

  • Tunlid, A.; White, D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky, G.; Bollag J-M., eds. Soil Biochemistry. New York. Marcel Decker; 1992:p. 229–262.

    Google Scholar 

  • Vainshtein, M.; Hippe, H.; Kroppenstedt, J. Cellular fatty acid composition of Desul-fovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15:554–566; 1992.

    CAS  Google Scholar 

  • Vechtel, B.; Eichenberger, W.; Ruppel, H.G. Lipid bodies in Eremosphaera viridis De Bary (Chlorophyceae). Plant Cell Physiol. 33:41–48; 1992.

    CAS  Google Scholar 

  • Volkman, J.K.; Burton, H.R.; Everitt, D.A.; Allen, D.I. Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia 165:41–57; 1988.

    Article  CAS  Google Scholar 

  • Volkman, J.K.; Smith, D.J.; Eglinton, G.; Forsberg, T.E.; Corner, D.S.E. Sterol and fatty acid composition of four marine Haptophycean algae. J. Mar. Biol. Assn. U. K. 61:509–517; 1981.

    Article  CAS  Google Scholar 

  • Wakeham, S.G.; Canuel, E.A. Fatty acids and sterols of particulate matter in a brackish and seasonally anoxic coastal salt pond. Adv. Organic Geochem. 16:703–713; 1990.

    Article  CAS  Google Scholar 

  • Ward, D.M.; Brassell, S.C.; Eglinton, G. Archaebacterial lipids in hot-spring microbial mats. Nature 318:656–659; 1985.

    Article  Google Scholar 

  • White, D.C. Chemical ecology: possible linkage between macro-and microbial ecology. Oikos 74:177–184: 1995.

    Article  Google Scholar 

  • White, D.C. Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31:1–18; 1988.

    Google Scholar 

  • White, D.C.; Davis, W.M.; Nickes, J.S.; King, J.D.; Bobbie, R.J. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecology 40:51–62; 1979.

    Article  Google Scholar 

  • Wood, B.J.B. Lipids of algae and protozoa. In: Ratledge, G.; Wilkinson, S.G., eds. Microbial Lipids. New York: Academic Press; 1988:p. 807–865.

    Google Scholar 

  • Wood, B.J.B. Fatty acids and saponifiable lipids. In: Stewart, W.D.P., ed. Biochemistry and Physiology of Algae. Berkeley: University of California Press; 1974:p. 236–265.

    Google Scholar 

  • Zeng, Y.B.; Ward, D.M.; Brassell, C.; Eglinton, G. Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats. Chem. Geol. 95:327–345; 1992a.

    Article  CAS  Google Scholar 

  • Zeng, Y.B.; Ward, D.M.; Brassell, S.C.; Eglinton, G. Biogeochemistry of hot spring environments. 3. Apolar and polar lipid in the biologically active layers of a cyanobacterial mat. Chem. Geol. 95:347–360; 1992b.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Napolitano, G.E. (1999). Fatty Acids as Trophic and Chemical Markers in Freshwater Ecosystems. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics