Skip to main content

Antibodies to Beta-Adrenergic Receptors

  • Chapter
The Beta-Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

Contemporary biochemists and molecular biologists strive to understand the relationship between the function and the detailed chemical structure of macromolecules. Whereas chemical and direct physical analyses are employed to probe molecular structure, specific antibodies to proteins have been invaluable reagents in the determination of the fine-structure of the antigen as well as the immunologic relationship of the antigen to other proteins. Often a crowning achievement to many years of arduous work purifying and characterizing a cellular protein is the production of specific antibodies to the protein. The availability of specific antibodies then propels the direction of research into investigations of entirely new areas of protein structure, function, and regulation that could not be approached by any other route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alho, H., Dillion-Carter, O., Moxham, C. P., Malbon, C. C., and Chuang, D.-M. (1988) Changes in immunohistochemical properties of β-adrenergic receptors in frog erythrocytes by isoproterenol-induced desensitization. Life Sciences 42,321–328.

    PubMed  CAS  Google Scholar 

  • Aoki, C., Joh, T. H., and Pickel, V. M. (1987) Ultrastructural localization of βadrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain. Brain Res. 437, 264–282.

    PubMed  CAS  Google Scholar 

  • Bahouth, S. W., Kelley, L. K., Smith, C. H., Arbabian, M. A., Ruoho, A. E., and Malbon, C. C. (1986) Identification of a novel 76-kDa form of β-adrenergic receptors. Biochem. Biophys. Res. Comm. 141, 411–417.

    PubMed  CAS  Google Scholar 

  • Bahouth, S. W. and Malbon, C. C. (1987) Human β-adrenergic receptors: Simultaneous purification of βl-and β2 adrenergic-receptor peptides. Biochem. J. 248,557–566.

    PubMed  CAS  Google Scholar 

  • Bahouth, S. W., Berrios, M., George, S. T., Hadcock, J. R., Wang, H. -S., and Malbon, C. C. (1988) β-adrenoceptors: New advances in purification and analysis, in Progress in Catecholamine Research, Liss, pp. 157–165.

    Google Scholar 

  • Beisiegel, U., Kita, T., Anderson, R. G. W., Schneider, W. J., Brown, M. S., and Goldstein, J. L. (1981a) Immunologic crossreactivity of the low density lipoprotein receptor from bovine adrenal cortex, human fibroblasts, canine liver and adrenal gland, and rat liver. J. Biol. Chem. 256,4071–4078.

    CAS  Google Scholar 

  • Beisiegel, U., Schneider, W. J., Goldstein, J. L., Anderson, R. G. W., and Brown, M. S. (1981b) Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. J. Biol. Chem. 256, 11923–11931.

    CAS  Google Scholar 

  • Benovic, J. L., Shoff, R. G. L., Caron, M. G., and Lefkowitz, R. J. (1984) The mammalian β2 adrenergic receptor: Purification and characterization. Biochemistry 23, 4510–4518.

    PubMed  CAS  Google Scholar 

  • Bers, G. and Garfin, D. (1985) Protein and nucleic acid blotting and immunochemical detection. BioTechniques 3, 276–287.

    CAS  Google Scholar 

  • Brandwein, H., Lewicki, J., and Murad, F. (1981) Production and characterization of monoclonal antibodies to soluble rat lung guanylate cyclase. Proc. Natl. Acad. Sci. USA 78, 4241–4245.

    PubMed  CAS  Google Scholar 

  • Caron, M. G., Srinivasan, Y., Snyderman, R., and Lefkowitz, R. J. (1979) Antibodies raised against purified β-adrenergic receptors specifically bind βadrenergic ligands. Proc. Natl. Acad Sci. USA 76, 2263–2267.

    PubMed  CAS  Google Scholar 

  • Cerione, R. A., Staniszewski, C., Benovic, J. L., Lefkowitz, R. J., Caron, M. G., Gierschick, P., Somers, R., Spiegel, A. M., Codina, J., and Birnbaumer, L. (1985) Specificity of the functional interactions of the β-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J. Biol. Chem. 260, 1493–1500.

    PubMed  CAS  Google Scholar 

  • Cervantes-Olivier, P., Delavier-Klutchko, C., Durieu-Trautmann, O., Kaveri, S., Desmandril, M., and Strosberg, A. D. (1988) The β2 adrenergic receptors of human epidermoid carcinoma cells bear two different types of oligosaccharides which influence expression on the cell surface. Biochem. J. 250, 133–143.

    PubMed  CAS  Google Scholar 

  • Choi, A. H. C., and Lee, P. W. K. (1988) Does the β-adrenergic receptor function as a reovirus receptor? Virology 163, 193–197.

    Google Scholar 

  • Chuang, D. M. (1985) A monoclonal antibody to a membrane component that interacts with the β-adenergic receptor. J. Cyclic Nucleotide Protein Phosphor. Res. 10, 281–292.

    PubMed  CAS  Google Scholar 

  • Chung, F. -Z., Lentes, K. -U., Gocayne, J., Fitzgerald, M., Robinson, D., Kerlavage, A. R., Fraser, C. M., and Venter, J. C. (1987) Cloning and sequence analysis of the human brain β-adrenergic receptor. FEBS Lett. 211, 200–206.

    PubMed  CAS  Google Scholar 

  • Cleveland, W. L., Wassermann, N. H., Sarangarajan, R., Penn, A. S., and Erlanger, B. F. (1983) Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-antiidiotypic mechanism. Nature 305, 56–57.

    PubMed  CAS  Google Scholar 

  • Co, M. S., Gaulton, G. N., Tominaga, A., Homcy, C. J., Fields, B. N., and Greene, M. I. (1985) Structural similarities between the mammalian β-adrenergic and reovirus type 3 receptors. Proc. Natl. Acad. Sci. USA 82, 5315–5318.

    PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B., Hunkapiller, M., Lindstrom, J., and Raftery, M. (1982) Subunit structure of the acetylcholine receptor from Electrophorous electricus. Proc. Natl. Acad. Sci. USA 79, 6489–6493.

    CAS  Google Scholar 

  • Conti-Tronconi, B. M. and Raftery, M. A. (1982) The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51, 491–530.

    PubMed  CAS  Google Scholar 

  • Couraud, P.O., Delavier-Klutchko, D., Durieu-Trautmann, O., and Strosberg, A. D. (1981) Antibodies raised against β-adrenergic receptors stimulate adenylate cyclase. Biochem. Biophys. Res. Commun. 99, 1295–1302.

    PubMed  CAS  Google Scholar 

  • Couraud, P.O., Lu, B. Z., Schmutz, A., Durieu-Trautmann, O., Klutchko-Delavier, C., Hoebeke, J., and Strosberg, A. D. (1983) Immunological studies of βadrenergic receptors. J. Cell. Biochem. 21, 187–193.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P. (1972) Affinity chromatography and purification of the insulin receptor of liver cell membranes. Proc. Natl. Acad. Sci. USA 69,1277–1281.

    PubMed  CAS  Google Scholar 

  • Cubero, A. and Malbon, C. C. (1984) The fat cell β-adrenergic receptor: Purification and characterization of a mammalian β1-adrenergic receptor. J. Biol. Chem. 259, 1344–1350.

    PubMed  CAS  Google Scholar 

  • Czech, M. P. (1985) The nature and regulation of the insulin receptor: Structure and function. Annu. Rev. Physiol. 47, 357–381.

    PubMed  CAS  Google Scholar 

  • Dietz, M. H., Sy, M. -S., Benacerraf, B., Nisonoff, A., Greene, M. L, and Germain, R. H. (1981) Antigen-and receptor-driven regulatory mechanisms. J. Exp. Med. 153, 450–463.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Sigal, I. S., Rands, E., Register, R. B., Candelore, M. R., Blake, A. D., and Strader, C. D. (1987) Ligand binding to the β-adrenergic receptor involves its rhodopsin-like core. Nature 326, 73–77.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergood, W., Rands, E., and Strader, C. D. (1987) Structural features required for ligand binding to the β-adrenergic receptor. EMBO J. 6, 3269–3275.

    PubMed  CAS  Google Scholar 

  • Emorine, L. J., Marullo, S., Delavier-Klutchko, C., Kaveri, S. V., Durieu-Trautmann, O., and Strosberg, A. D. (1987) Structure of the gene for human βadrenergic receptor: Expression and promoter characterization. Proc. Natl. Acad. Sci. USA 84, 6995–6999.

    PubMed  CAS  Google Scholar 

  • Erickson, P. F., Minier, L. N., and Lasher, R. S. (1982) Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: A method for their reuse in immunoautoradiographic detection of antigens. J. Immunol. Methods 51, 241–249.

    PubMed  CAS  Google Scholar 

  • Farid, N. R., Briones-Urbina, R., and Bear, J. C. (1983) Graves’ disease The thyroid stimulating antibody and immunological networks. Mol. Asp. Med 6, 355–457.

    CAS  Google Scholar 

  • Farid, N. R. and Lo, T. C. Y. (1985) Antiidiotypic antibodies as probes for receptor structure and function. Endocr. Rev. 6, 1–23.

    PubMed  CAS  Google Scholar 

  • Fraser, C. M. (1989) Site-directed mutagenesis of β-adrenergic receptors. J. Biol. Chem. 264, 9266–9270.

    PubMed  CAS  Google Scholar 

  • Fraser, C. M. and Lindstrom, J. (1984) The use of monoclonal antibodies in receptor characterization and purification, in Molecular and Chemical Characterization of Membrane Receptors. Alan R. Liss, New York, pp. 1–30.

    Google Scholar 

  • Fraser, C. M. and Venter, J. C. (1980) Monoclonal antibodies to β-adrenergic receptors: Use in purification and molecular characterization of β receptors. Proc. Natl. Acad. Sci. USA 77, 7034–7038.

    PubMed  CAS  Google Scholar 

  • Fraser, C. M. and Venter, J. C. (1982) The size of the mamamlian lung β2 adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem. and Biophys. Res. Commun. 109, 21–29.

    CAS  Google Scholar 

  • Fraser, C. M. and Venter, J. C. (1984) Antireceptor antibodies in human disease. J. Allergy and Clin. Immun. 74, 661–673.

    CAS  Google Scholar 

  • Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. (1987) Cloning of the cDNA for the human β-adrenergic receptor. Biochemistry 84, 7920–7924.

    CAS  Google Scholar 

  • Gaulton, G. N., Co, M. S., Royer, H. D., and Greene, M. I. (1985) Antiidiotypic antibodies as probes of cell surface receptors. Mol. Cell Biochem. 65, 5–21.

    Google Scholar 

  • Gefter, M. L., Margulies, D. H., and Scharff, M. D. (1977) A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet. 3, 231–236.

    PubMed  CAS  Google Scholar 

  • George, S. T. and Malbon, C. C. (1985) Large-scale purification of β-adrenergic receptors from mammalian cells in culture. Prep. Biochem. 15, 349–366.

    PubMed  CAS  Google Scholar 

  • George, S. T., Benlos, M., Hadcock, J. R., Wang, H.-Y., and Malbon, C. C. (1988) Receptor density and cyclic AMP accumulation: Analysis in CHO cells exhibiting stable expression of a cDNA that encodes the β2-adrenergic receptor. Biochem. Biophys. Res. Commun. 150, 665–672.

    PubMed  CAS  Google Scholar 

  • George, S. T., Arbabian, M. A., Ruoho, A. E., Kiely, J., and Malbon, C. C. (1989) High-effeciency expression of mammalian β-adrenergic receptors in baculovirus-infected insect cells. Biochem. Biophys. Res. Comm. 163,1265–1269.

    PubMed  CAS  Google Scholar 

  • Gramsch, C., Schulz, R., Kosin, S., and Herz, A. (1988) Monoclonal antiidiotypic antibodies to opioid receptors. J. Biol. Chem. 263, 5853–5859.

    PubMed  CAS  Google Scholar 

  • Graziano, M. P., Moxham, C. P., and Malbon, C. C. (1985) Purified rat hepatic β2-adrenergic receptor. J. Biol. Chem. 260, 7665–7674.

    PubMed  CAS  Google Scholar 

  • Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T. M., Sutcliffe, J. G., and Lerner, R. A. (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 28, 477–487.

    PubMed  CAS  Google Scholar 

  • Guillet, J. G., Chamat, S., Hoebeke, J., and Strosberg, A. D. (1984) Production and detection of monoclonal antiidiotype antibodies directed against a monoclonal anti-beta-adrenergic ligand antibody. J. Immunol. Methods 74, 163–171.

    PubMed  CAS  Google Scholar 

  • Guillet, J.G., Kaveri, S. V., Durieu, O., Delavier, C., Hoebeke, J., and Strosberg, A. D. (1985) β-adrenergic agonist activity of a monoclonal antiidiotypic antibody. Proc. Natl. Acad. Sci. USA 82,1781–1784.

    PubMed  CAS  Google Scholar 

  • Gullick, W., Tzartos, S., and Lindstrom, J. (1981) Monoclonal antibodies as probes of acetylcholine receptor structure. Biochemistry 20, 2173–2180.

    PubMed  CAS  Google Scholar 

  • Hadcock, J. R., Wang, H.-Y., and Malbon, C. C. (1989) Agonist-induced destabilization of β-adrenergic receptor mRNA. J. Biol. Chem. 264,19928–19933.

    PubMed  CAS  Google Scholar 

  • Herrera, R., Petruzzelli, L., Thomas, N., Bramson, H. N., Kaiser, E. T., and Rosen, O. M. (1985) An antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity. Proc. Natl. Acad. Sci. USA 82, 7899–7903.

    PubMed  CAS  Google Scholar 

  • Hoebeke, J., Vauquelin, G., and Strosberg, A. D. (1977) The production and characterization of antibodies against β-adrenergic antagonists. Biochem. Pharmacol. 27,1527–1532.

    Google Scholar 

  • Homcy, C. J., Rockson, S. G., and Haber, E. (1982) An antiidiotypic antibody that recognizes the β-adrenergic receptor. J. Clin. Invest. 69,1147–1154.

    PubMed  CAS  Google Scholar 

  • Homcy, C. J., Rockson, S. G., Countaway, J., and Egan, D. A. (1983) Purification and characterization of the mammalian β2-adrenergic receptor. Biochemistry 22, 660–668.

    PubMed  CAS  Google Scholar 

  • Hunkapiller, M. W. and Hood, L. E. (1983) Protein sequence analysis: Automated microsequencing. Science 219, 650–659.

    PubMed  CAS  Google Scholar 

  • Ishimoto, I., Kiyama, H., Malbon, C. C., Iwahashi, Manabe, R., and Tohyama, M. (1989) Localization of adrenergic receptors in the rat retina: An immunocytochemistry study. Neurosci. Res. in press.

    Google Scholar 

  • Islam, M. N., Pepper, B. M., Briones-Urbina, R., and Farid, N. R. (1983a) Biological activity of anti-thyrotropin antiidiotypic antibody. Eur. J. Immunol. 13, 57–62.

    CAS  Google Scholar 

  • Islam, M. N., Briones-Urbina, R., Bako, G., and Farid, N. R. (1983b) Both TSH and thyroid-stimulating antibody of Graves’ disease bind to a M, 197,000 holoreceptor. Endocrinology 113, 436–438.

    CAS  Google Scholar 

  • Itami, S., Kino, J., Halprin, K. M., and Adachi, K. (1987) Immunohistochemical study of β-adrenergic receptors in the psoriatic epidermis using an antialprenolol antiidiotypic antibody. Arch Dermatol. Res. 279, 439–443.

    PubMed  CAS  Google Scholar 

  • Jacobs, S., Chang, K. J., and Cuatrecasas, P. (1978) Antibodies to purified insulin receptor have insulin-like activity. Science 200, 1283–1284.

    PubMed  CAS  Google Scholar 

  • Jerne, N. K. (1974) Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur) 125C, 373–388.

    CAS  Google Scholar 

  • Johnstone, A. and Thorpe, R. (1982) Immunochemistry in Practice (Blackwell Scientific Publishers, London).

    Google Scholar 

  • Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 85, 8459–8463.

    PubMed  CAS  Google Scholar 

  • Kasuga, M., Hedo, J. A., Yamada, K. M., and Kahn, C. R. (1983) The structure of insulin receptor and its subunits. J. Biol. Chem. 257, 10392–10399.

    Google Scholar 

  • Kaveri, S. V., Cervantes-Olivier, P., Delavier-Klutchko, C., and Strosberg, A. D. (1987) Monoclonal antibodies directed against the human A431 β2-adrenergic receptor recognize two major polypeptide chains. Eur. J. Biochem. 167, 449–456.

    PubMed  CAS  Google Scholar 

  • Kelley, L. K., Smith, C. H., and King, B. F. (1983) Isolation and partial characterization of the basal cell membrane of human placental trophoblast. Biochem. Biophys. Acta 734, 91–98.

    PubMed  CAS  Google Scholar 

  • Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    PubMed  CAS  Google Scholar 

  • Kull, F. C., Jr., Jacobs, S., Su, Y.-F., and Cuatrecasas, P. (1982) A monoclonal antibody to human insulin receptor. Biochem. Biophys. Res. Commun. 106, 1019–1026.

    PubMed  CAS  Google Scholar 

  • Lerner, R. A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299, 592–596.

    CAS  Google Scholar 

  • Liggett, S. B., Bouvier, M., O’Dowd, B. F., Caron, M. G., Lefkowitz, R. J., and DeBlasi, A. (1989) Substitution of an extracellular cysteine in the β2 adrenergic receptor enhances agonist-promoted phosphorylation and receptor desensitization. Biochem. Biophys. Res. Commun. 165, 257–263.

    PubMed  CAS  Google Scholar 

  • Mahan, L. C., McKernan, R. M., and Insel, P. A. (1987) Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Annu. Rev. Pharmacol. Toxicol. 27, 215–235.

    CAS  Google Scholar 

  • Malbon, C. C. (1990) Purification of β-adrenergic receptors: Isolation of mammalian βl-and β2-subtypes, in Receptor Purification (Litwack, G., ed., Humana Press) in press.

    Google Scholar 

  • Malbon, C. C., George, S. T., and Moxham, C. P. (1987) Intramolecular disulfide bridges: Avenues to receptor activation? Trends Biochem. Sci. 12,172–175.

    CAS  Google Scholar 

  • Malbon, C. C., Moxham, C. P., Rapiejko, P. J., Bahouth, S. W., Brandwein, H., and George, S. T. (1987) The structure and biology of β-adrenergic receptors: Analysis by biochemical, immunologic, and molecular biological approaches, in Synaptic Transmitters and Receptors (John Wiley and Sons, New York), 239–248.

    Google Scholar 

  • Marasco, W. A. and Becker, E. L. (1982) Antiidiotype as antibody against the formyl peptide chemotaxis receptor of the neutrophil. J. Immunol. 128, 963–968.

    PubMed  CAS  Google Scholar 

  • Marglin, A. and Merrifield, R. B. (1970) Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 39, 841–866.

    PubMed  CAS  Google Scholar 

  • Morgan, D. O., Ho, L., Korn, L. J., and Roth, R. A. (1986) Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase. Proc. Natl. Acad. Sci. USA 83, 328–332.

    PubMed  CAS  Google Scholar 

  • Moxham, C. P. and Malbon, C. C. (1985) Fat cell β1-adrenergic receptor: Structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry 24, 6072–6077.

    PubMed  CAS  Google Scholar 

  • Moxham, C. P., Cubero, A., Brandwein, H., and Malbon, C. C. (1985a) Murine poly-clonal antibodies to the fat cell β1 adrenergic receptor. Biophys. J. 47, 200a.

    Google Scholar 

  • Moxham, C. P., Graziano, M. P., Brandwein, H., and Malbon, C. C. (1985c) Mammalian β1- and β2-adrenergic receptors: Structural and immunological comparisons. Fed. Proc. 44, 1795.

    Google Scholar 

  • Moxham, C. P., George, S. T., Graziano, M. P., Brandwein, H., and Malbon, C. C. (1986a) Mammalian β1- and β2 adrenergic receptors- Immunologic and structural comparisons. J. Biol. Chem. 261, 14562–14570.

    CAS  Google Scholar 

  • Moxham, C. P., George, S. T., Brandwein, H., and Malbon, C. C. (1986b) Mammalian β-adrenergic receptors: Immunolgical analysis of native forms in membranes. Fed. Proc. 45,15–69.

    Google Scholar 

  • Moxham, C. P., Ross, E. M., George, S. T., and Malbon, C. C. (1988) β-adrenergic receptors display intramolecular disulfide bridges in situ: Analysis by immunoblotting and functional reconstitution. Mol. Pharmacol. 33,486–492.

    PubMed  CAS  Google Scholar 

  • Nathans, J. and Hogness, D. S. (1983) Isolation, sequence analysis, and intronexon arrangement of the gene encoding bovine rhodopsin. Ce11 34, 807–814.

    CAS  Google Scholar 

  • Nathans, J., Thomas, D., and Hogness, D. S. (1986) Molecular genetics or human color vision: The genes encoding blue, green, and red pigments. Science 232, 193–202.

    PubMed  CAS  Google Scholar 

  • Nepom, J. T., Tardieu, M., Epstein, R. L., Noseworthy, J. H., Weiner, H. L., Gentsch, J., Fields, B. N., and Greene, M. I. (1982) Virus-binding receptors: Similarities to immune receptors as determined by antiidiotypic antibodies. Surv. Immunol. Res. 1, 255–261.

    PubMed  CAS  Google Scholar 

  • Noseworthy, J. H., Fields, B. N., Dichter, M. A., Sobotka, C., Pizer, E., Perry, L. L., Nepom, J. T., and Greene, M. I. (1983) Cell receptors for the mammalian reovirus. I. Syngeneic monclonal antiidiotypic antibody identifies a cell surface receptor for reovirus. J. Immunol. 131, 2533–2538.

    PubMed  CAS  Google Scholar 

  • Olmsted, J. B. (1981) Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J. Biol. Chem. 256, 11955–11957.

    PubMed  CAS  Google Scholar 

  • Owen, F. L., Ju, S. T., and Nisonoff, A. (1977) Presence on idiotype-specific suppressor T cells of receptors that interact with molecules bearing the idiotype. J. Exp. Med. 145, 1559–1566.

    PubMed  CAS  Google Scholar 

  • Patrick, J. and Lindstrom, J. (1973) Autoimmune response to acetylcholine receptor. Science 180, 871–872.

    PubMed  CAS  Google Scholar 

  • Pedersen, S. E. and Ross, E. M. (1985) Functional activation of β-adrenergic receptors by thiols in the presence or absence of agonists. J. Biol. Chem. 260, 14150–14157.

    PubMed  CAS  Google Scholar 

  • Rapiejko, P. J., George, S. T., and Malbon, C. C. (1988) Primary structure of a human protein which bears structural similarities to members of the rhodopsin/beta-adrenergic receptor family. Nucleic Acids Res. 16, 8721–8722.

    PubMed  CAS  Google Scholar 

  • Relyveld, E. H. and Ben-Efraim, S. (1981) Preparation of highly immunogenic protein conjugates by direct coupling to glutaraldehyde-treated cells: Comparison with commonly used preparations. J. Immunol. Methods 40, 209–217.

    PubMed  CAS  Google Scholar 

  • Rockson, S. G., Homcy, C. J., and Haber, E. (1980) Anti-alprenolol antibodies in the rabbit. Circ. Res. 46, 808–813.

    PubMed  CAS  Google Scholar 

  • Roof, D. J., Applebury, M. L., and Sternweis, P. C. (1985) Relationships within the family of GTP-binding proteins isolated from bovine central nervous system. J. Biol. Chem. 260,16242–16249.

    PubMed  CAS  Google Scholar 

  • Ros, M., Northup, J. K., and Malbon, C. C. (1988) Steady-state levels of G-proteins and β-adrenergic receptors in rat fat cells. J. Biol. Chem. 263 4362–4368.

    PubMed  CAS  Google Scholar 

  • Roth, R. A., Cassell, D. J., Wong, K. Y., Maddux, B. A., and Goldfine, I. D. (1982) Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action. Proc. Natl. Acad. Sci. USA 79 7312–7316.

    PubMed  CAS  Google Scholar 

  • Rubenstein, R. C., Wong, S. K.-F., and Ross, E. M. (1987) The hydrophobic tryptic core of the β-adrenergic receptor retains G, regulatory activity in response to agonists and thiols. J. Biol. Chem. 262, 16655–16662.

    PubMed  CAS  Google Scholar 

  • Sato, M., Kubota, Y., Malbon, C. C., and Tohyama, M. (1989) Immunohistochemical evidence that most rat corticotrophs contain β-adrenergic receptors. Neuroendocrinology 50, 577–583.

    PubMed  CAS  Google Scholar 

  • Sawutz, D. G., Bassel-Duby, R., and Homcy, C. J. (1987) High-affinity binding of reovirus type 3 to cells that lack β-adrenergic receptor activity. Life Sci. 40, 399–406.

    PubMed  CAS  Google Scholar 

  • Schreiber, A. B., Couraud, P. O., Andre, C., Vray, B., and Strosberg, A. D. (1980) Anti-alprenolol antiidiotypic antibodies bind to β-adrenergic receptors and modulate catecholamine-sensitive adenylate cyclase. Proc. Natl. Acad. Sci. USA 77,7385–7389.

    PubMed  CAS  Google Scholar 

  • Schreiber, A. B., Lax, I., Yarden, Y., Eshhar, Z., and Schlessinger, J. (1981) Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc. Nall. Acad. Sci. USA 78, 7535–7539.

    CAS  Google Scholar 

  • Schreiber, A. B., Liberman, T. A., Lax, I., Yarden, Y., and Schlessinger, J. (1983) Biological role of epidermal growth factor-receptor clustering. J. Biol. Chem. 258, 846–853.

    PubMed  CAS  Google Scholar 

  • Sege, K. and Peterson, P. A. (1978) Use of antiidiotypic antibodies as cell-surface receptor probes. Proc. Natl. Acad. Sci. USA 75, 2443–2447.

    PubMed  CAS  Google Scholar 

  • Shechter, Y., Maron, R., Elias, D., and Cohen, I. R. (1982) Autoantibodies to insulin receptor spontaneously develop as antiidiotypes in mice immunized with insulin. Science 216, 542–545.

    PubMed  CAS  Google Scholar 

  • Shorr, R. G. L., Strohsacker, M. W., Lavin, T. N., Lefkowitz, R. J., and Caron, M. G. (1982) The adrenergic receptor of the turkey erythrocyte: Molecular heterogeneity revealed by purification and photoaffinity labeling. J. Biol. Chem. 257, 12341–12350.

    PubMed  CAS  Google Scholar 

  • Sigel, M. B., Sinha, Y. N., and Vanderlaan, W. P. (1983) Production of antibodies by inoculation into lymph nodes. Methods Enzymol. 93, 3–12.

    PubMed  CAS  Google Scholar 

  • Smith, D. E. and Fisher, P. A. (1984) Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosoohila embryos: Application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J. Cell Biol. 99, 20–28.

    PubMed  CAS  Google Scholar 

  • Strader, C. D., Pickel, V. M., Joh, T. H., Strohsacker, M. W., Shorr, R. G. L., Lefkowitz, R. G., and Caron, M. G. (1983) Antibodies to the β-adrenergic receptor: Attenuation of catecholamine-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain. Proc. Natl. Acad. Sci. USA 80, 1840–1844.

    PubMed  CAS  Google Scholar 

  • Strader, C. D., Sigal, I. S., Blake, A. D., Cheung, A. H., Register, R. B., Rands, E., Zemcik, B. A., Candelore, M. R., and Dixon, R. A. F. (1987) The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 49, 855–863.

    PubMed  CAS  Google Scholar 

  • Strosberg, A. D. (1984) Antiidiotypic antibodies as immunological internal images of hormones, in Idiotypy in Biology and Medicine (Academic), pp. 365–383.

    Google Scholar 

  • Sutcliffe, J. G., Shinnick, T. M., Green, N., and Lerner, R. A. (1983) Antibodies that react with predetermined sites on proteins. Science 219, 660–666.

    PubMed  CAS  Google Scholar 

  • Takano, T., Kubota, Y., Malbon, C. C., and Tohyama, M. (1989) β-adrenergic receptors in the vasopressin-containing neurons in the paraventricular and supraoptic nucleis of the rat. Brain Research 499, 174–179.

    PubMed  CAS  Google Scholar 

  • Temeles, G. L., Gibbs, J. B., D’Alonzo, J. S., Sigal, I. S., and Scolnick, E. M. (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313, 700–703.

    PubMed  CAS  Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    PubMed  CAS  Google Scholar 

  • Tzartos, S. J. and Lindstrom, J. M. (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77, 755–759.

    PubMed  CAS  Google Scholar 

  • Van Obberghen, E., Kasuga, M., Le Cam, A., Hedo, J. A., Itin, A., and Harrison, L. C. (1981) Biosynthetic labeling of insulin receptor: Studies of subunits in cultured human IM-9 lymphocytes. Proc. Natl. Acad Sci. USA 78, 1052–1056.

    PubMed  Google Scholar 

  • Venter, J. C., Fraser, C. M., and Harrison, L. C. (1980) Autoantibodies to β2-adrenergic receptors: A possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma. Science 207, 1361–1362.

    PubMed  CAS  Google Scholar 

  • Venter, J. C. and Fraser, C. M. (1981) The development of monoclonal antibodies to β-adrenergicreceptors and their use in receptor purification and characterization, in Monoclonal Antibodies in Endocrine Research (Fellows, R. and Eisenbarth, G., eds.), Raven, New York, pp. 119–134.

    Google Scholar 

  • Venter, J. C. and Fraser, C. M. (1983) The structure of alpha-and beta-adrenergic receptors. Trends Pharmacol. Sci. 4, 256–258.

    CAS  Google Scholar 

  • Ventimiglia, R., Greene, M. I., and Geller, H. M. (1987) Localization of βadrenergic receptors on differentiated cells of the central nervous system in culture. Proc. Natl. Acad. Sci. USA 84, 5073–5077.

    PubMed  CAS  Google Scholar 

  • Wanaka, A., Kiyama, H., Murakami, T., Matsumoto, M., Kamada, T., Malbon, C. C., and Tohyama, M. (1989) Immunocytochemical localization of β-adrenergic receptors in the rat brain. Brain Res. 485, 125–140.

    PubMed  CAS  Google Scholar 

  • Wanaka, A., Malbon, C. C., Matsumoto, M., and Tohyama, M. (1989) Presence of catecholamine axon-terminals which contain β-adrenergic receptor in the periventricular zone of the rat hypothalamus. Brain Res. 479, 190–193.

    PubMed  CAS  Google Scholar 

  • Wang, H.-S., Berrios, M., and Malbon, C. C. (1988a) Indirect immunofluorescence localization of β-adrenergic receptors and G-proteins in human epidermoid carcinoma A431 cells. Biochem. J. 263, 519–533.

    Google Scholar 

  • Wang, H. -S., Berrios, M., and Malbon, C. C. (1989b) Localization of β-adrenergic receptors in A431 cell in situ: Effect of chronic exposure to agonist. Biochem. J. 263, 533–538.

    CAS  Google Scholar 

  • Wang, H. Y., Lipfert, L., Malbon, C. C., and Bahouth, S. (1989c) Site-directed anti-peptide antibodies define the topography of the β-adrenergic receptor. J. Biol. Chem. 264, 14424–14431.

    CAS  Google Scholar 

  • Wasserman, N. H., Penn, A. S., Freimuth, P. I., Treptow, N., Wentzel, S., Cleveland, W. L., and Erlanger, B. F. (1982) Antiidiotypic route to antiacetylcholine receptor antibodies and experimental myasthenia gravis. Proc. Natl. Acad. Sci. USA 79, 4810–4814.

    Google Scholar 

  • Weiss, E., Hadcock, J., Johnson, G. L., and Malbon, C. C. (1987) Antipeptide antibodies directed against cytoplasmic rhodopsin sequences recognize the β-adrenergic receptor. J. Biol. Chem. 262, 4319–4323.

    PubMed  CAS  Google Scholar 

  • Weiss, E. R., Kelleher, D. J., and Johnson, G. L. (1988) Mapping sites of interaction between rhodopsin and transducin using rhodopsin antipeptide antibodies. J. Biol. Chem. 263, 6150–6154.

    PubMed  CAS  Google Scholar 

  • Wrenn, S. and Haber, E. (1979) An antibody specific for the propranolol binding site of cardiac muscle. J. Biol. Chem. 254, 6577–6582.

    PubMed  CAS  Google Scholar 

  • Yarden, Y., Rodriguez, H., Wong, S. K.-F., Brandt, D. R., May, D. C., Burnier, J., Harkins, R. N., Chen, E. Y., Ramachandran, J., Ullrich, A., and Ross, E. M. (1986) The avian β-adrenergic receptor: Primary structure and membrane topology. Proc. Natl. Acad. Sci. USA 83, 6795–6799.

    PubMed  CAS  Google Scholar 

  • Young, R. A. and Davis, R. W. (1983) Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80, 1194–1198.

    PubMed  CAS  Google Scholar 

  • Zucker, C. S., Cowman, A. F., and Rubin, G.M. (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858.

    Google Scholar 

  • Zucker, C. S., Cowman, A. F., and Rubin, G. M. (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malbon, C.C., Moxham, C.P., Brandwein, H.J. (1991). Antibodies to Beta-Adrenergic Receptors. In: Perkins, J.P. (eds) The Beta-Adrenergic Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0463-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0463-3_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6772-0

  • Online ISBN: 978-1-4612-0463-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics