Skip to main content

Relations Between Solutions to a Discrete and Continuous Dirichlet Problem

  • Chapter
Random Walks, Brownian Motion, and Interacting Particle Systems

Part of the book series: Progress in Probability ((PRPR,volume 28))

Abstract

Consider the Dirichlet problem on the planar region W consisting of the unit disc minus a sector:\(W = \left\{ {x = \left( {{x_1},{x_2}} \right):0 < |x| < 1, - {a_2} < \arg ument\left( x \right) < {a_1}} \right\}\) for some \(0 < {a_1},{a_2} \leqslant \pi ,{a_1} + {a_2} >\pi\) (see Fig. 1). We denote by L i , i = 1,2, the line segment \(\left\{ {\operatorname{x} :argument\left( x \right) = {{\left( { - 1} \right)}^{i - 1}}{a_i},0 \leqslant |x| \leqslant 1} \right\}\) in ∂W. Let ϕ be a piecewise continuous function on ∂W which vanishes on L 1 U L 2 and let u(ϕ,•) be the harmonic function on W with boundary values ϕ. Thus △ϕ = O. The discrete analogue, or the analogue for a simple random walk with step size h, is a function u h (ϕ, •) on hℤ 2 which satisfies

$${\Delta _h}{\mu _h}\left( {\varphi ,\chi } \right): = \frac{1}{4}\sum\limits_{i = 1}^2 {\left[ {{\mu _h}\left( {\varphi ,\chi + {h_{ei}}} \right) + {\mu _h}\left( {\varphi ,\chi - {h_{ei}}} \right)} \right]} - {\mu _h}\left( {\varphi ,\chi } \right) = 0$$

for x ∈ hℤ2W, where e i is the i — th coordinate vector. Moreover u h (ϕ, •) should be “close to ϕ on the discrete boundary of W”. We prove an asymptotic relation (as h ↓ 0) between u h ϕ, hv) and u(ϕ,hv) for fixed υ ∈ ℤ2. This can be used to find the asymptotic behavior (as n → ∞) of the probability of a simple random walk “starting at ∞” to hit the “triangular” region \(\left\{ {x \in {Z^2}:|x| \leqslant n, - {\alpha _2} \leqslant \operatorname{argument} \left( x \right) \leqslant {\alpha _1}} \right\}\) near the origin. This kind of estimate is useful for a modified version of Diffusion—Limited Aggregation.

Partially supported by a National Science Foundation grant to Cornell University

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, P. (1989) Some hitting probabilities of random walk on Z2, preprint.

    Google Scholar 

  2. Billingsley, P. (1968) Convergence of probability measures, John Wiley & Sons.

    MATH  Google Scholar 

  3. Courant, R., Friedrichs, K. and Lewy, H. (1928) Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 32–74

    Article  MathSciNet  MATH  Google Scholar 

  4. Doyle, P. G. and Snell, J. L. (1984) Random walks and electric networks, Carus Monograph #22, Math. Assoc. America.

    MATH  Google Scholar 

  5. Dynkin, E. B. and Yuskewitsch, A. A. (1969) Sätze und Aufgaben über Markoffsche Prozesse, Springer-Verlag.

    Book  Google Scholar 

  6. Kesten, H. (1987) How long are the arms in DLA?, J. Phys. A. 20 L29–L33.

    Article  MathSciNet  Google Scholar 

  7. Kesten, H. (1987) Hitting probabilities of random walks on Zd, Stoch. Proc. and their Appl. 25 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kesten, H. (1990) Relations between solutions to a discrete and continuous Dirichlet problem II, preprint.

    Google Scholar 

  9. Kesten, H. (1991) Some caricatures of multiple contact diffusion-limited aggregation and the 77-model, Proc. of London Math. Soc. Probability Conference, Durham, 1990.

    Google Scholar 

  10. Laasonen, P. (1967) On the discretization error of the Dirichlet problem in a plane region with corners, Ann. Acad. Sci. Fenn. A I 408 2–16.

    MathSciNet  Google Scholar 

  11. Lawler, G. (1991) Intersections of random walks, Birkhäuser- Boston.

    Book  MATH  Google Scholar 

  12. Spitzer, F. (1964) Principles of random walk, D. van Nostrand Co.

    Book  MATH  Google Scholar 

  13. Witten, T. A. and Sander, L. M. (1981) Diffusion-limited aggregation, a kinetic phenomenon, Phys. Rev. Lett. 47 1400–1403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kesten, H. (1991). Relations Between Solutions to a Discrete and Continuous Dirichlet Problem. In: Durrett, R., Kesten, H. (eds) Random Walks, Brownian Motion, and Interacting Particle Systems. Progress in Probability, vol 28. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0459-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0459-6_17

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6770-6

  • Online ISBN: 978-1-4612-0459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics