Skip to main content

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

Many current studies in heart development appropriately emphasize identifying new genes or genetic “wiring” In the last 5 years, dozens, if not a hundred or more, potential regulatory genes have been identified as being expressed in the heart and many of these have been or are being used to create animal models in which to study the function of these genes. Thus, what we have today is a rapidly growing number of genes and genetically created animals. While the identification of new genes expressed in the heart is exciting and always with anticipation of being an upstream master regulator (e.g., a “myo–H” Miner et al, 1992) the fact remains that the heart is the outcome of many cellular processes operating at different time points and at different levels of structural complexity. Moreover, as described above, not all cells in the heart are derived from the heart–forming fields and as many as three heart fields may be required to sustain the progressive formation of segments. Thus, to fully exploit the wealth of new genetic information, what is needed are studies that can provide an understanding of how fundamental, cellular interactions are integrated over time to engender changes in gene expression that direct the morphogenetic processes required for the formation of a tubular heart and its subsequent remodeling into a four–chambered organ. The chapters presented in this volume present new data and/or review studies that provide insight for mechanistically interpreting (or hypothesizing) structural or functional consequences of those gene activities that can continue to move the field of cardiac morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. (1989). The present-day place of correlations between embryology and anatomy in the understanding of congenitally malformed hearts. Correlations between experimental cardiac embryology and teratology and congenital cardiac defects. A. A. a. P. T, University of Granada Press: 265–295.

    Google Scholar 

  • Anderson, R.H., and Taylor, I.M. (1972). Development of atrioventricular specialized tissue in human heart. British Heart Journal 34(12):1205–1214.

    Article  PubMed  CAS  Google Scholar 

  • Antin, P.B., Taylor, R.G., and Yatskievych, T. (1994). Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 200:144–154.

    Article  PubMed  CAS  Google Scholar 

  • Bao, Z.-Z., Bruneau, B.G., Seidman, J.G., Seideman, C.E., and Cepko, C.L. (1999). Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283:1161–1164.

    Article  CAS  Google Scholar 

  • Barteling, M.M., and Gittenberger-deGroot, A.C. (1989). The outflow tract of the heart-embryologic and morphologic correlations. Int J Cardiol 22:289–300.

    Article  Google Scholar 

  • Ben-Shachar, G., Arcilla, R.A., Lucas, R.V., and Manasek, F.J. (1985). Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular development. Circ Res 57:759–766.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729.

    CAS  Google Scholar 

  • Bouchey, D., Argraves, W.S., and Little, C.D. (1996). Fibulin-1, vitronectin and fibronectin expression during avian valve and septal development. Anat Rec 244:540–551.

    Article  PubMed  CAS  Google Scholar 

  • Bouman, H.G.A., Broekhuizen, M.L.A., Baasten, M.J., Gittenberger-deGroot, A.C., and Wenink, A.C.G. (1995). A spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec 243:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, A.S., Ayerinskas, I.I., Vincent, E.B., McKinney, L.A., Weeks, D.L., and Runyan, R.B. (1999). TGF beta2 and TGF beta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208:530–545.

    Article  PubMed  CAS  Google Scholar 

  • Brand, T., Andree, B., Schneider, A., Buchberger, A., and Arnold, H.-H. (1997). Chicken NKx2.8, a novel homeobox gene expressed during early heart and foregut development. Mech Dev 64:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.B., Boyer, A.S., Runyan, R.B., and Barnett, J.V. (1999). Requirement of the type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283:2080–2082.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S., Biben, C., Ooms, L.M., et al. (1999). The cardiac expression of striated muscle LIM protein 1 (SLIM1) is restricted to the outflow tract of the developing heart. J Mol Cell Cardiol 31:837–841.

    Article  PubMed  CAS  Google Scholar 

  • Brueckner, M.D., and Horwich, A.L. (1989). Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci USA 86:5035.

    Article  PubMed  CAS  Google Scholar 

  • Capehart, A.A., Mjaatvedt, C.H., Hoffman, S., and Krug, E.L. (1999). Dynamic expression of a native chrondroitin sulfate epitope reveals microheterogeneity of extracellular matrix organization in the embryonic chick heart. Anat Rec 1:1–15.

    Google Scholar 

  • Castro-Quezada, A., Nidal-Ginard, B., and de la Cruz, M.V. (1972). Experimental study of the formation of the bulboventricular loop in the chick. J Embryol Exp Morphol 27:623–637.

    PubMed  CAS  Google Scholar 

  • Chan-Thomas, P., Thompson, R.P., Robert, B., Yacoub, M.H., and Barton, P.J. (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn 197:203–216.

    Article  PubMed  CAS  Google Scholar 

  • Clark, T.G., Conway, S.J., Scott, I.C., et al. (1999). The mammalian tolloid-like 1 gene, Tll, is necessary for normal septation and positioning of the heart. Development 126:2631–2642.

    PubMed  CAS  Google Scholar 

  • Cohen-Gould, L., and Mikawa, T. (1996). The fate diversity of mesodermal cells within the heart field during early embryogenesis. Dev Biol 177:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Conway, S., Henderson, D., and Copp, A. (1997). Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124:505–514.

    PubMed  CAS  Google Scholar 

  • Crossin, K., and Hoffman, S. (1991). Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Dev Biol 145:277–286.

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz, M.V. (1998). Embryological development of the outlet of each ventricle. In: de la Cruz, M.V., and Markwald, R.R., eds. Living Morphogenesis of the Heart. Birkhauser (Springer/Verlag), Boston, pp. 157–168.

    Chapter  Google Scholar 

  • de la Cruz, M.V., Castillo, M., Villavicencio, L., Valencia, G.A., and Moreno-Rodriguez, R.A. (1997). Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo. Anat Rec 247:512–520.

    Article  PubMed  Google Scholar 

  • de la Cruz, M.V., Moreno-Rodriguez, R., and Markwald, R.R. (1998). Embryological development of the ventricular inlets. Septation and atrioventricular valve apparatus. In: de la Cruz, M.V., and Markwald, R.R., eds. Living Morphogenesis of the Heart. Birkhauser (Springer-Verlag), Boston, pp. 1131–1156.

    Chapter  Google Scholar 

  • de La Cruz, M.V., Robota, G.M., Saravalli, O., and Cayre, R. (1983). The contribution of the inferior cushion of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72.

    Article  PubMed  Google Scholar 

  • de la Cruz, M.V., and Sanchez-Gomez, C. (1998). Straight tube heart: primitive cardiac cavities vs. primitive cardiac segments. In: de la Cruz, M.V., and Markwald, R.R., eds. Living Morphogenesis of the Heart. Birkhauser (Springer Verlag), Boston, pp. 85–99.

    Chapter  Google Scholar 

  • de la Cruz, M.V., Sanchez-Gomez, C., Arteaga, M.M., and Arguello, C. (1977). Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661–686.

    PubMed  Google Scholar 

  • de la Cruz, M.V., and Sanchez Gomez, C., Cayre, R. (1991). The developmental components of the ventricles: their significance in congenital cardiac malformations. Cardiol Young 1:123–128.

    Google Scholar 

  • de La Cruz, M.V., Sanchez-Gomez, C., and Palomino, M.A. (1989). The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat 165:121–131.

    Google Scholar 

  • DeRuiter, M.C., Poelmann, R.E., Vanderplass-deVries, I., Mentink, M.M.T., and Gittenberger-de Groot, A.C. (1992). The development of the myocardium and endocardium in mouse embryos: fusion of two heart tubes? Anat Embryol 185:461–473.

    Article  PubMed  CAS  Google Scholar 

  • Dettman, R.W., Denetclaw, W. Jr., Ordahl, C.P., and Bristow, J. (1998). Common epicardial origin of coronary smooth muscle, perivascular fibroblasts and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, D.J., Jussila, L., Taipale, J., et al. (1999). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949.

    Article  Google Scholar 

  • Eisenberg, C.A., Gourdie, R.G., and Eisenberg, L.M. (1997). Wnt-11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE6. Development 124:525–536.

    PubMed  CAS  Google Scholar 

  • Eisenberg, C.A., and Markwald, R.R. (1997). Mixed cultures of avian blastoderm cells and the quail mesoderm cell line QCE-6 provide evidence for the pluripotentiality of early mesoderm. Dev Biol 191:167–181.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, L.M., and Markwald, R.R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S.A., and Watanabe, M. (1996). Expression of exogenous protein and analysis of morphogenesis in the developing chicken heart using an adenoviral vector. Cardiovasc Res 31:E86–E95.

    PubMed  Google Scholar 

  • Franco, D., Kelly, R., Buckingham, M., and Mooman, A.F.M. (1997). Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: morphogenetic implications. Dev Biol 187:17–33.

    Article  Google Scholar 

  • Garcia-Martinez, V., Schoenwolf, G.C. (1993). Primitive steak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., and Brauer, R.P. (1996). Latent transforming growth factor-beta is present in the extracellular matrix of embryonic hearts in situ. Dev Dyn 205:126–134.

    Article  PubMed  CAS  Google Scholar 

  • Gittenberger-deGroot, A.C., Bartelings, M.M., and Poelmann, R.E. (1995). Cardiac morphogenesis. In: Clark, E.B., Markwald, R.R., Takao, A., eds. Developmental Mechanisms of Heart Disease, Futura, Armonk, NY, pp. 157–168.

    Google Scholar 

  • Gittenberger-deGroot, A.C., Vrancken Peeters, M.P., Mentink, M.M., Gourdie, R.G., and Poelmann, R.E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and atrioventricular cushion. Cire Res 82:1043–1052.

    Article  CAS  Google Scholar 

  • Gorza, L., Schiaffino, S., and Vitadella, M. (1988). Heart conduction system: a neural crest derivative? Brain Res 457:360–366.

    Article  PubMed  CAS  Google Scholar 

  • Gorza, L., and Vitadello, M. (1989). Distribution of conduction system fibers in the developing and adult rabbit heart revealed by an antineurofilament antibody. Circ Res 65:360–369.

    Article  PubMed  CAS  Google Scholar 

  • Gourdie, R.G., Kubalak, S., and Mikawa, T. (1999). Conducting the embryonic heart: orchestrating development of the specialized cardiac tissues. Trends Cardiovasc Med 9:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Gourdie, R.G., Mima, T., Thompson, R.P., and Mikawa, T. (1995). Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431.

    PubMed  CAS  Google Scholar 

  • Gourdie, R.G., Wei, Y., Kim, D., Klatt, S.C., and Mikawa, T. (1998). Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 95:6815–6818.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Dennis, J.E., Cohen-Gould, L., Bader, D.M., Fischman, D.A. (1992). Expression of sarcomeric myosin in the presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Dev Dyn 193:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277(5322):48–50.

    Article  PubMed  CAS  Google Scholar 

  • Hogers, B., DeRuiter, M.C., Gittenberger-deGroot, A.C., and Poelmann, R.E. (1997). Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle, C., Brown, N.A., Wolpert, L. (1992). Development of left/right handedness in the chick heart. Development 115:1071–1078.

    PubMed  CAS  Google Scholar 

  • Icardo, J.M., and Sanchez, M.J. (1991). Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 84:25472558.

    Google Scholar 

  • Isokawa, K., Rezaee, M., Wunsch, A., Markwald, R., and Krug, E.L. (1994). Identification of transferrin as one of multiple EDTA-extractable extracellular proteins involved in early chick heart morphogenesis. J Cell Biochem 54:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C.M., Lyons, K.M., and Hogan, B.L.M. (1991). Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111:531–542.

    PubMed  CAS  Google Scholar 

  • Keith, A., and Flack, M.W. (1907). The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172–189.

    PubMed  CAS  Google Scholar 

  • Kirby, M.L. (1993). Cellular and molecular contributions of the cardiac neural crest to cardiovascular development. Trends Cardiovasc Med 3:18–23.

    Article  PubMed  CAS  Google Scholar 

  • Krug, E.L., Mjaatvedt, C.H., and Markwald, R.R. (1987). Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Dev Biol 120:348–355.

    Article  PubMed  CAS  Google Scholar 

  • Krug, E.L., Rezaee, M., Isokawa, K., et al. (1995). Transformation of cardiac endothelium into cushion mesenchyme is dependent of ES/130: temporal, spatial, and functional studies in the early chick embryo. Cell Mol Biol Res 41:263–277.

    PubMed  CAS  Google Scholar 

  • Kupershmidt, S., Yang, T., Wessels, A., Niswender, K.D., Magnuson, M.A., and Roden, D.M. (1999). Replacement by homologous recombination of the minK gene with LacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ Res 84:146–152.

    Article  PubMed  CAS  Google Scholar 

  • Kwee, L., Baldwin, H.S., Shen, H.M., et al. (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM1) deficient mice. Development 121:489–503.

    PubMed  CAS  Google Scholar 

  • Ladd, A.N., Yatskievych, T.A., and Antin, P.B. (1998). Regulation of avian cardiac myogenesis by actin/TGF beta and bone morphogenetic proteins. Dev Biol 204:407–419.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, W.H., to Korschot, A., Los, J.A., and Mooman, A.F. (1987). Acetylcholinesterase in prenatal rat heart: a marker for the early development of the cardiac conductive tissue? Anat Rec 217:361–370.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, W.H., Viragh, S.Z., Wessels, A., Moorman, A.F.M., and Anderson, R.H. (1995).Formation of the tricuspid valve in the human heart. Circ Res 91:111–121.

    CAS  Google Scholar 

  • Lamers, W.H., Wessels, A., Verbeek, F.J., et al. (1992). New findings concerning ventricu-lar septation in the human heart. Circulation 86:1194–1205.

    Article  PubMed  CAS  Google Scholar 

  • Laverriere, A.C., MacNeill, C., Mueller, C., Poelmann, R.E., Burch, J.B., and Evans, T. (1994). GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:2377–2384.

    Google Scholar 

  • Lin, Q., Schwartz, J.A., and Olsen, E.N. (1997). Control of cardiac morphogenesis and myogenesis by the myogenic transcription factor MEF-2C. Science 276:1404–1407.

    CAS  Google Scholar 

  • Linask, K.K. (1992). N-cadherin localization in early heart development and polar expression of Na+,K+ ATPase and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev Biol 151:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Linask, K.K., and Lash, J.W. (1988). A role for fibronectin in the migration of avian pre-cardiac cells. I. Dose-dependent effects of fibronectin antibody. Dev Biol 114:87–101.

    Article  Google Scholar 

  • Linask, K.K., and Lash, J.W. (1993). Early heart development: dynamics of the endocardial cell sorting suggests a common origin with cardiocytes. Dev Dyn 195:62–69.

    Article  Google Scholar 

  • Linask, K.K., and Lash, J.W. (1998). Morphoregulatory mechanisms underlying early heart development. In: de la Cruz, M.V., and Markwald, R.R., eds. Living Morphogenesis of the Heart. Birkhauser (Springer/Verlag), Boston, pp. 1–41.

    Chapter  Google Scholar 

  • Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., and Harvey, R.P. (1993). NKX-2.5: a novel murine homeobox gene expressed in early hearts progenitor cells and their myogenic descendants. Development 119:419–431.

    PubMed  CAS  Google Scholar 

  • Little, C.D., and Rongish, B.J. (1995). Extracellular matrix in heart development. Experientia 51:873–882.

    Article  PubMed  CAS  Google Scholar 

  • Litvin, J., Montgomery, M., Gonzalez-Sanchez, A., Bisaha, J.G., and Bader, D. (1992). Commitment and differentiation of cardiac myocytes. Trends Cardiovasc Med 2:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Lough, J., Barron, M., Brogley, M., Sugi, Y., Bolender, D.L., and Zhu, X. (1996). Combined BMP-2 and FGF-4 but neither factor alone, induce cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, I., Parsons, L.M., Hartley, L., et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2–5. Genes Dev 9:1654–1666.

    Article  CAS  Google Scholar 

  • Markwald, R., Eisenberg, C., Eisenberg, L., Trusk, T., and Sugi, Y. (1996). Epithelialmesenchymal transformations in early heart development. Acta Anat 156:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Markwald, R.R., Trusk, T., Gittenberger-deGroot, A.C., and Poelman, R. (1997). Cardiac morphogenesis: formation and septation of the primary heart tube. In: Kavlock, R., and Datson, G., eds. Handbook of Experimental Pharmacology, vol 124/I. Springer-Verlag, Berlin, pp. 11–40.

    Google Scholar 

  • Markwald, R.R., Trusk, T., and Moreno-Rodriguez, R. (1998). Formation and septation of the tubular heart: integrating the dynamics of morphology with emerging molecular concepts. In: de la Cruz, M.V., and Markwald, R.R. eds. Living Morphogenesis of the Heart. Birkhauser (Springer-Verlag), Boston, pp. 43–84.

    Chapter  Google Scholar 

  • McGuire, P.G., and Alexander, S.M. (1993). Inhibition of urokinase synthetase and cell surface binding alters the motile behavior of embryonic endocardial derived mesenchymal cells in vitro. Development 118:931–939.

    PubMed  CAS  Google Scholar 

  • Meyer, D., and Birchmeier, C. (1995). Multiple essential functions of neuregulin in development [see comments]. Nature 378(6555):386–390.

    Article  PubMed  CAS  Google Scholar 

  • Mikawa, T., Borisov, A., Brown, A.M.C., and Fischman, D.A. (1992). Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 195:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Miner, J.H., Miller, J.B., and Wold, B.J. (1992). Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development 114:853–860.

    PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., Krug, E.L., and Markwald, R.R. (1991). An antiserum (ES1) against a particulate form of extracellular matrix blocks the transformation of cardiac endothelium into mesenchyme in culture. Dev Biol 145:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., and Markwald, R.R. (1989). Induction of epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol 136:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., Yamamura, H., Capehart, A.A., Turner, D., and Markwald, R.R. (1998). The Cspg2 gene, disrupted in the hdf mutant is required for right cardiac chamber and endocardial cushion formation. Dev Biol 202:56–66.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., Yamamura, H., Ramsdell, A., Turner, D., and Markwald, R.R. (1999). Mechanisms of segmentation and remodeling of the tubular heart: endocardial cushion fate and cardiac looping. In: Harvey, R.P., and Rosenthal, N., eds. Heart Development. Academic Press, New York, pp. 159–177.

    Chapter  Google Scholar 

  • Molkentin, J.D., Kalvakolanu, D.V., and Markham, B.E. (1994). Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy chain gene. Mol Cell Biol 14:4947–4957.

    PubMed  CAS  Google Scholar 

  • Montgomery, M.O., Litvin, J., Gonzalez-Sanchez, A., and Bader, D. (1994). Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 164:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Moore, A.W., McInnes, L., Kreidberg, J., Hastie, N.D., and Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857.

    PubMed  CAS  Google Scholar 

  • Moorman, A.F.M., van den Hoff, M.J.B., DeJong, F., et al. (2000). Myocardialization: a novel mechanism of cardiac septation. In: Clark, E.B., Takao, A., and Nakazawa, M., eds. Etiology of Congenital Heart Disease, vol 5. (In press.)

    Google Scholar 

  • Nakajima, Y., Krug, E.L., and Markwald, R.R. (1994). Myocardial regulation of transforming growth factor-beta expression by outflow tract endothelium in the early embryonic chick heart. Dev Biol 165:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y., Miyazono, K., Kato, M., Takase, M., Yamagishi, T., and Nakamura, H. (1997a). Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart. J Cell Biol 136:193–204.

    Article  CAS  Google Scholar 

  • Nakajima, Y., Yamagishi, T., Nakamura, H., Markwald, R.R., and Krug, E.L. (1997b). An autocrine function for transforming growth factor (TGF) beta3 in the transformation of atrioventricular canal endocardium into mesenchyme during chick heart development. Dev Biol 194:58–72.

    Google Scholar 

  • Nishibatake, M., Kirby, M.L., and Van Mierop, H.L. (1987). Pathogenesis or persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 75:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M., Poelmann, R.E., and Gittenberger-deGroot, A.C. (1995). Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc Med 5:6975.

    Google Scholar 

  • Nusse, R., and Varmus, H.E. (1992). Wnt genes. Cell 69:1073–1087.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, N., Akimoto, N., et al. (1981). Role of cell death in conal ridges of developing human heart. Perspectives in Cardiovascular Research. Vol. 5. Mechanisms of cardiac morphogenesis and teratogenesis. T. Pexieder. New York, Raven Press: 127–137.

    Google Scholar 

  • Okamoto, N., Akimoto, N., Satow, Y., Hidaka, N., and Miyabara, S. (1981). Role of cell death in conal ridges of developing human heart. In: Pexieder, T., ed. Perspectives in Cardiovascular Research, Vol 5: Mechanisms of Cardiac Morphogenesis and Teratogenesis. Raven Press, New York, pp. 127–137.

    Google Scholar 

  • Olsen, E.N., and Srivastava, D. (1996). Molecular pathways controlling heart development. Science 272:671–676.

    Article  Google Scholar 

  • Patterson, D.F., Pexieder, T., Schnarr, W.R., Navratil, T., and Alaili, R. (1993). A single major-gene defect underlying cardiac conotruncal malformations interferes with myocadial growth during embryonic development: studies in the CTD line of Keeshond dogs. Am J Hum Genet 52:388–397.

    PubMed  CAS  Google Scholar 

  • Perez-Pomares, J.M., Macias, D., Garcia-Garrido, L., and Munoz-Chapuli, R. (1997). Contribution of the primitive epicardium to the subepicardial mesenchyme. Dev Dyn 210:96–105.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pomares, J.M., Macias, D., Garcia-Garrido, L., and Munoz-Chapuli, R. (1998). The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol 200:57–68.

    Article  PubMed  CAS  Google Scholar 

  • Pexieder, T., Wenink, A.C., et al. (1989). A suggested nomenclature for the developing heart. Working Group for Embryology and Teratology of the European Society of Cardiology. International Journal of Cardiology 25(3):255–263.

    Article  PubMed  CAS  Google Scholar 

  • Poelmann, R.E., Mikawa, T., and Gittenberger-deGroot, A.C. (1998). Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 212:373–384.

    Article  PubMed  CAS  Google Scholar 

  • Potts, J.D., Dagle, J.M., Walder, J.A., Weeks, D.L., and Runyan, R.B. (1991). Epithelial mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor b3. Proc Natl Acad Sci USA 88:1516–1520.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell, A., and Markwald, R. (1997). Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFbeta-3-mediated autocrine signalling. Dev Biol 187:64–74.

    Article  Google Scholar 

  • Ramsdell, A.F., Moreno-Rodriguez, R.A., Weinecke, M.M., et al. (1998). Identification of an autocrine signaling pathway that amplifies induction of endocardial cushion tissue in the avian heart. Acta Anat 162:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Ranger, A., Grusby, M., Hodge, M., et al. (1998). The transcription factor NFATc is essential for cardiac valve formation. Nature 392:186–190.

    Google Scholar 

  • Rawles, M.E. (1943). The heart-forming areas of the early chick blastoderm. Physiol Zool 16:22–42.

    Google Scholar 

  • Robb, L., Mifsud, L., Hartley, L., et al. (1998). Epicardin, a novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts and mesenchyme of developing lung, gut, kidney and gonads. Dev Dyn 213:105–113.

    Article  PubMed  CAS  Google Scholar 

  • Rongish, B.J., Drake, C.J., Argraves, W.S., and Little, C.D. (1998). Identification of the developmentally expressed JB3 antigen as avian fibrillin-2. Dev Dyn 212:461–471.

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist, G.C., and DeHaan, R.L. (1966). Migration of precardiac cells in the chick embryo: a radiographic study, Carnegie Inst Washington. Contrib Embryol 38:111–121.

    Google Scholar 

  • Ross, R.S., Navankasattusas, S., Harvey, R.P., and Chien, K.R. (1996). An HF-1a/HF1b/MEF-2 combinatorial element confers cardiac ventricular specificity and establishes an anterior posterior gradient of expression. Development 122:1799–1809.

    PubMed  CAS  Google Scholar 

  • Runyan, R.B., and Markwald, R.R. (1983). Invasion of mesenchyme into three-dimensional gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., Potts, J.D., Sharma, R.V., Loeber, C.P., Chiang, J.J., and Bhalla, R.C. (1990). Signal transduction of a tissue interaction during embryonic heart development. Cell Regul 1:301–313.

    PubMed  CAS  Google Scholar 

  • Ruzicka, D.L., and Schwartz, R.J. (1988). Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2755–2586.

    Article  Google Scholar 

  • Sato, T.N., Tozawa, Y., et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376(6535):70–74.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, L.P., Ormsby, I., Gittenberger-deGroot, A.C., et al. (1997). TGF beta-2 knockout mice have multple developmental defects that are non-overlapping with other TGF beta knockout phenotypes. Development 124:2645–2657.

    Google Scholar 

  • Schilham, M.W., Oosterwegel, M.A., Moerer, P., et al. (1996). Sox-4 gene is required for cardiac outflow tract formation and pro-B lymphocyte expansion. Nature 380:711–714.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, T.M., Burch, J.B.E., and Lassar, A.B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myocytes. Genes Dev 11:451–462.

    Article  PubMed  CAS  Google Scholar 

  • Shinbourne, E.A., Macartney, F.J., and Anderson, R.H. (1976). Sequential chamber localization-a logical approach to diagnosis in congenital heart disease. Br Heart J 38:327–340.

    Article  Google Scholar 

  • Sinning, A.R. (1997). Partial purification of HLAMP-1 provides direct evidence for the multicomponent nature of the particulate matrix associated with cardiac mesenchyme formation. J Cell Biochem 66:112–122.

    Article  PubMed  CAS  Google Scholar 

  • Sinning, A.R., Hewitt, C.C., and Markwald, R.R. (1995). A subset of SBA lectin-binding proteins isolated from myocardial-conditioned media transforms cardiac endothelium into mesenchyme. Acta Anat 154:111–119.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.M., Dickman, E.D., Thompson, R.P., Sinning, A.R., Wunsch, A.M., and Markwald, R.R. (1997). Retinoic acid directs cardiac laterality and expression of early markers of cardiogenesis. Dev Biol 182:162–181.

    Article  PubMed  CAS  Google Scholar 

  • Soler, A.P., and Knudsen, K.A. (1994). N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol 162:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Spence, S.G., Argraves, W.S., Walters, L., Hungerford, J.E., and Little, C.D. (1992). Fibulin is localized at sites of epithelial-mesenchymal transitions in the early embryo. Dev Biol 151:473–484.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D., Thomas, T., Lin, Q., Kirby, M.L., Brown, D., and Olson, E.N. (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor dHAND. Nature Genet 16:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Stahlsberg, H. (1969). The origin of heart asymmetry: right and left contributions to the early chick embryo heart. Dev Biol 19:109–127.

    Article  Google Scholar 

  • Stainer, D.Y., and Fishman, M.C. (1992). Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153(1):91–101.

    Article  Google Scholar 

  • Sugi, Y., and Markwald, R.R. (1996). Formation and early morphogenesis of endocardial precursor cells and the role of endoderm. Dev Biol 175:66–83.

    Article  PubMed  CAS  Google Scholar 

  • Supp, D.M., Witte, D.P., Potter, S.S., and Brueckner, M. (1997). Mutation of an axonemal dynein affects left-right symmetry in inversus viserum mice. Nature 389:963–966.

    Article  PubMed  CAS  Google Scholar 

  • Suri, C., Jones, P., et al. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  • Tasaka, H., Krug, E.L., and Markwald, R.R. (1996). Origin of the pulmonary venosus orifice in the mouse and its relationship to the morphogenesis of the sinus venosus, extracardiac mesenchyme (spina vestibuli) and atrium. Anat Rec 246:107–113.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R.P., and Fitzharris, T.P. (1979). Morphogenesis of the truncus arteriosus of the chick embryo heart: tissue reorganization during septation. Am J Anat 156:251264.

    Google Scholar 

  • Thompson, R.P., Kanai, T., Germroth, P.G., et al. (1995). Organization and function of early specialized myocardium. In: Clark, E.B., Markwald, R.R., and Takao, A., eds. Developmental Mechanisms of Congenital Heart Disease. Futura, Armonk, NY, pp. 269–279.

    Google Scholar 

  • van den Hoff, M.J.B., Bennington, R.W., et al. (1999). Myocardialization of the cardiac outflow tract. Dev Biol 212:477–490.

    Article  PubMed  Google Scholar 

  • van Kempen, M.J., Fromaget, C., et al. (1991). Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circulation Research 68(6):1638–1651.

    Article  PubMed  Google Scholar 

  • Viragh, S., and Challice, C.E. (1973). The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168.

    Article  Google Scholar 

  • Viragh, S., Gittenberger-deGroot, A.C., Poelmann, R.E., and Kalman, F. (1994). Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol 188:381–393.

    Google Scholar 

  • Viragh, S., Szabo, E., and Challice, C.E. (1989). Formation of the primitive myo-and endocardial tubes in the chicken embryo. J Mol Cell Cardiol 21:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Waldo, K., Miyagawa-Tomita, S., Kumiski, D., and Kirby, M.L. (1998). Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol 196:129–144.

    Article  PubMed  CAS  Google Scholar 

  • Waldo, K., Zdanowicz, M., Burch, J., et al. (1999). A novel role for cardiac neural crest in heart development. J Clin Inuest 103:1499–1507.

    Article  CAS  Google Scholar 

  • Wall, N.A., and Hogan, B. (1994). TGF-beta related genes in development. Curr Opin Genet Dev 4:517–522.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S., Brown, N.A., and Anderson, R.H. (1998). Formation of the atrioventricular septal structures in the normal mouse. Circ Res 82:645–656.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, A., Anderson, R.H., Markwald, R.R., Webb, S., Brown, N.A., Viragh, S.Z., Moorman, A.F.M., and Lamers, W.H. (2000). Atrial Development in the Human Heart: An immunohistochemical study with emphasis on the role of mesenchymal tissues. The Anatomical Record 259:288–300.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, A., Vermeulen, J.L.M., Virágh, S.Z., Kálmán, F., Morris, G.E., Nguyen, T.M., Lamers, W.H., and Moorman, A.F.M. (1990). Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns. Anat Rec 228:163–176.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, A., Vermeulen, J.L.M., Verbeek, F.J., et al. (1992). Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec 231:97–111.

    Article  Google Scholar 

  • Wessels, A., Vermeulen, J.L.M., Viragh, S.Z., Lamers, W.H., and Moorman, A.F.M. (1991). Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: II. An immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec 229:355–368.

    Article  PubMed  CAS  Google Scholar 

  • Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L.M. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116.

    Article  PubMed  CAS  Google Scholar 

  • Wunsch, A., Markwald, R.R., and Little, C.D. (1994). Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3 antigen, a fibrillin-like protein of the endocardial cushion tissue. Dev Biol 165:585–601.

    Article  PubMed  CAS  Google Scholar 

  • Ya, J., van den Hoff, M.J.B., de Boer, P.A.J., et al. (1998). The normal development of the outflow tract in the rat. Circ Res 82:464–472.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, H., Zhang, M., Mjaatvedt, C.H., and Markwald, R.R. (1997). A heart segmental defect in the anterior/posterior axis of a transgenic mutant mouse. Dev Biol 186:58–72.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J.T., Rayburn, H., and Hynes, R.O. (1995). Cell adhesion events mediated by alpha-4 integrins are essential in placental and cardiac development. Development 121:549–560.

    PubMed  CAS  Google Scholar 

  • Yutzey, K.E., Rhee, J.T., and Bader, D.M. (1994). Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120:871–883.

    PubMed  CAS  Google Scholar 

  • Zhang, H., and Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122(10):2977–2986.

    PubMed  CAS  Google Scholar 

  • Zhang, H.-Y., Chu, M.-L., Te-Cheng, P., Sasaki, T., Timple, R., and Ekblom, R. (1995). Extracellular matrix protein fibulin-2 is expressed in the embryonic endocardial cushion tissue and is a prominent component of valves in adult heart. Dev Biol 167:18–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markwald, R.R., Wessels, A. (2001). Overview of Heart Development. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics