Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

A specific form of the Mellin transform, referred to as the “scale transform,” is known to be a natural complement to the Fourier transform for wide-band analytic signals. In this chapter, limitations for the simultaneous localization of scale transform pairs are investigated. A number of inequalities are established and discussed, based on various measures of spread (Heisenberg-type inequalities for variance-like measures and Hirschman-type inequalities for entropy). The same issue of maximally concentrating a signal in both scale and frequency domains is also addressed via spread measures, which are applied directly to joint scale-frequency distributions. A simple way of obtaining inequalities for Altes-type distributions is pointed out, new results pertaining to the unitary Bertrand distribution are established, as well as a new form of uncertainty relation for the wavelet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bertrand, P. Bertrand, and J. P. Ovarlez. The Mellin transform, inThe Transforms and Applications Handbook(A. D. Poularikas, ed.), CRC Press, Boca Raton, FL, 1996, pp. 829–885.

    Google Scholar 

  2. L. Cohen.Time-Frequency AnalysisPrentice-Hall, Englewoods Cliffs, NJ, 1995.

    Google Scholar 

  3. P. Flandrin.Time-Frequency/Time-Scale AnalysisAcademic Press, San Diego, CA, 1998.

    Google Scholar 

  4. G. B. Folland.Harmonic Analysis in Phase SpacePrinceton University Press, Princeton, NJ, 1989.

    MATH  Google Scholar 

  5. G. B. Folland and A. Sitaram. The uncertainty principle: A mathematical survey.J. Fourier Anal. Appl. 3(1997), 207–238.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. R. Klauder. Path integrals for affine variables, inFunctional Integration: Theory and Applications(J.P. Antoine and E. Tirapegui, eds.), Plenum Press, New York, 1980, pp. 101–119.

    Google Scholar 

  7. G. Hardy, J. E. Littlewood, and G. P¨®lya.InequalitiesCambridge University Press, Cambridge, UK, 1934.

    Google Scholar 

  8. R. A. Altes. Sonar for generalized target description and its similarity to animal echolocation systemsJ. Acoust. Soc. Am. 59(1976), 97–105.

    Article  Google Scholar 

  9. R. B. Ash.Information Theory.Dover, New York, 1965.

    Google Scholar 

  10. I. I. Hirschman. A note on entropyAmer. J. Math. 79(1957), 152–156.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Beckner. Inequalities in Fourier analysis.Ann. of Math. 102(1975), 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  12. I.Daubechies. Time-frequency localization operators: A geometric phase-space approach, IEEE Trans. Inform. Theory 34(1988), 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies and Th. Paul. Time-frequency localization operators: A geometric phase-space approach¡ªII. The use of dilations.Inverse Problems 4(1988), 661–680.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. G. de Bruijn. Uncertainty principles in Fourier analysis, in Inequalities (O. Shisha, ed.), Academic Press, New York, 1967, pp. 57–71.

    Google Scholar 

  15. P. Flandrin. Maximum signal energy concentration in a time-frequency domainIEEE Int. Conf. on Acoust. Speech and Signal Proc. ICASSP-88New York, 1988, pp. 2176–2179.

    Google Scholar 

  16. A. J. E. M. Janssen. On the locus and spread of pseudo-density functions in the time-frequency planePhilips J. Res. 37(1982), 79–110.

    MathSciNet  MATH  Google Scholar 

  17. R. G. Baraniuk and D. L. Jones. Unitary equivalence: A new twist on signal processingIEEE Trans. Signal Process. 43(1995), 2269–2282.

    Article  Google Scholar 

  18. G. F. Boudreaux-Bartels. Mixed time-frequency signal transformations, inThe Transforms and Applications Handbook(A. D. Poularikas, ed.), CRC Press, Boca Raton, FL, 1996 pp. 887–962.

    Google Scholar 

  19. J. Bertrand and P. Bertrand. A class of affine Wigner functions with extended covariance propertiesJ. Math. Phys. 33(1992), 2515–2527.

    Article  MathSciNet  Google Scholar 

  20. P. Flandrin. Separability, positivity and minimum uncertainty in time-frequency energy distributionsJ. Math. Phys. 39(1998), 4016–4040.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Dahlke and P. Maass. The affine uncertainty principle in one and two dimensionsComput. Math. Appl. 30(1995), 293–305.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Wilczok. Zur Funktionalanalysis der Wavelet-und der Gabor-transformation. PhD Thesis, Univ. Erlangen N¨¹rnberg, Germany, 1997.

    Google Scholar 

  23. E. Wilczok. New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform (1998). Preprint available fromhttp://www-m6.mathematik.tu-muenchen.de/~elke/Papers/

    Google Scholar 

  24. J. Bertrand and P. Bertrand. Time-frequency representations of broad-band signalsIEEE Int. Conf. on Acoust.Speech and Signal Proc. ICASSP-88New York, 1988, pp. 2196–2199.

    Google Scholar 

  25. R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen, and O. Michel. Measuring time-frequency information content using the Rényi entropies (1998). Preprint available fromhttp://www-dsp.rice.edu/publications/pub/info98.ps.Z

    Google Scholar 

  26. E. Lieb. Integral bounds for radar ambiguity functions and the Wigner distributionJ. Math. Phys. 31(1990), 594–599.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flandrin, P. (2001). Inequalities in Mellin-Fourier Signal Analysis. In: Debnath, L. (eds) Wavelet Transforms and Time-Frequency Signal Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0137-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0137-3_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6629-7

  • Online ISBN: 978-1-4612-0137-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics