Skip to main content

On the Bootstrap and Empirical Processes for Dependent Sequences

  • Chapter
Empirical Process Techniques for Dependent Data

Abstract

The goal of this paper is to describe recent advances in empirical processes theory and several bootstraps for dependent data. We will address both theory and applications. The first three sections deal with the heuristics, motivation, statement of results and applications. The last section is devoted to mathematical techniques behind the theory. Although some results presented here are new (bootstrap for Markov chains), this is not a research paper, and the presented proofs do not contain all the details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcones, M.A. and Yu, B. Central limit theorems for empirical and U-processes of stationary mixing sequences. J. Theor. Probab. 7 (1994), 47–71.

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K.B. and Ney, P. A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 (1978), 493–501.

    Article  MathSciNet  MATH  Google Scholar 

  3. Athreya, K.B. and Fuh, C.D. Bootstrapping Markov chains: countable case. J. Statist. Plan. Infer. 33 (1992), 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bickel, P. and Freedman, D. Some asymptotic theory for the bootstrap. Ann. Statist. 9 (1981), 1196–1216.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolthausen, E. The Berry-Esséen theorem for functionals of discrete Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 54 (1980), 59–73.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradley, R.C. A stationary, pairwise independent, absolutely regular sequence for which the central limit theorem fails. Probab. Th. Rel Fields 81 (1989), 1–10.

    Article  MATH  Google Scholar 

  7. Bühlmann, P. Blockwise bootstrapped empirical process for stationary sequences. Ann. Statist. 22 (1994), 995–1012.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bühlmann, P. The blockwise bootstrap for general empirical processes of stationary sequences. Stock. Proc. Appl. 58 (1995), 247–265.

    Article  MATH  Google Scholar 

  9. Chung, K. L. Markov Chains with Stationary Transition Probabilities. Springer, Berlin, 1967.

    MATH  Google Scholar 

  10. Datta, S. and McCormick, W.P. Regeneration-based bootstrap for Markov chains. Canad. J. Statist. 21 (1993), 181–193.

    Article  MathSciNet  MATH  Google Scholar 

  11. Datta, S. and McCormick, W.P. Some continuous Edgeworth expansion for Markov chains with applications to bootstrap. J. Multivar. Anal. 52 (1995), 83–106.

    Article  MathSciNet  MATH  Google Scholar 

  12. Davydov, Y.A. Convergence of distributions generated by stationary stochastic processes. Th. Probab. Appl. (1968), 691–696.

    Google Scholar 

  13. Derman, C. Some asymptotic distribution theory for Markov chains with a denumerable number of states. Biometrika 43 (1956), 285–294.

    MathSciNet  MATH  Google Scholar 

  14. Doukhan, P. Mixing: Properties and Examples. Lecture Notes in Statistics, Springer, Berlin, 1994.

    MATH  Google Scholar 

  15. Doukhan, P, Massart, P. and Rio, E. The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincare, Probab. Stat. 30 (1994), 63–82.

    MathSciNet  MATH  Google Scholar 

  16. Doukhan, P. Massart, P. and Rio, E. Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincare, Probab. Stat. 31 (1995), 393–427.

    MathSciNet  MATH  Google Scholar 

  17. Dudley, R. M. Central limit theorems for empirical measures. Ann. Probab. 6 (1978), 899–929.

    Article  MathSciNet  MATH  Google Scholar 

  18. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Statist. 7 (1979), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  19. Efron, B. and Tibshirani, R.J. An Introduction to the Bootstrap. Chapman and Hall, New York, 1993.

    MATH  Google Scholar 

  20. Giné, E. and Zinn, J. Necessary conditions for the bootstrap of the mean. Ann. Statist. 17 (1989), 684–691.

    Article  MathSciNet  MATH  Google Scholar 

  21. Giné, E. and Zinn, J. Bootstrapping general empirical measures. Ann. Probab. 18 (1990), 851–869.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hall, P. The Bootstrap and Edgeworth Expansions. Springer, Berlin, 1992.

    Google Scholar 

  23. Huber, P.J. Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964), 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibragimov, I.A. and Linnik, Y.V. Independent and Stationary Sequences of Random Variable. Wolters-Noordhoff, Groningen, 1971.

    Google Scholar 

  25. Künsch, H.R. The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 (1989), 1217–1241.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, R. Singh, K. Moving blocks jackknife and bootstrap capture weak dependence. In: Exploring the Limits of Bootstrap. Wiley, New York, pp. 225–248, 1992.

    Google Scholar 

  27. Naik-Nimbalkar U.V. and Rajarshi, M.B. Validity of blockwise bootstrap for empirical processes with stationary observations. Ann. Statist. 22 (1994), 980–994.

    Article  MathSciNet  MATH  Google Scholar 

  28. Nummelin, E. A Splitting technique for Harris recurrent chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 43 (1978), 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  29. Paparoditis, E. and Politis, D.N. The local bootstrap for Markov processes. J. Statist. Plan. Inf. 108 (2002).

    Google Scholar 

  30. Peligrad, M. On the blockwise bootstrap for empirical processes for stationary sequences. Ann. Probab. 26 (1998), 887–901.

    Article  MathSciNet  Google Scholar 

  31. Peligrad, M. Convergence of stopped sums of weakly dependent random variables. Electr. J. Probab. 4 (1999), number 13.

    MathSciNet  Google Scholar 

  32. Pollard, D. Convergence of Stochastic Processes. Springer, New York, 1984.

    Book  MATH  Google Scholar 

  33. Radulović, D. The bootstrap of the mean for strong mixing sequences under minimal conditions. Stat. Prob. Letters 28 (1996), 65–72.

    Article  MATH  Google Scholar 

  34. Radulović, D. The bootstrap for empirical processes based on stationary observations. Stoch. Proc. Appl. 65 (1996), 259–279.

    Article  MATH  Google Scholar 

  35. Radulović, D. The bootstrap of empirical processes for α -mixing sequences. Progress in Probability, Vol 43, Birkhäuser, Basel, 1998.

    Google Scholar 

  36. Radulović, D. Can we bootstrap even if CLT fails?, J. Theor. Probab. 11 (1998), 813–830.

    Article  MATH  Google Scholar 

  37. Radulović, D. Renewal type bootstrap for Markov chains. Preprint (2001).

    Google Scholar 

  38. Rajarshi, M.B. Bootstrap in Markov-sequences based on estimates of transition density, Ann. Inst. Statist. Math. 42 (1990), 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosenblatt, M. A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  40. Shao, Q. and Yu, H. Bootstrapping the sample mean for stationary mixing sequences, Stoch. Proc. Appl. 48 (1995), 175–190.

    Article  MathSciNet  Google Scholar 

  41. Singh, K. On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 (1981), 1187–1195.

    Article  MathSciNet  MATH  Google Scholar 

  42. Vaart, A.W. van der and Wellner J. A. Weak Convergence and Empirical Processes. Springer, New York, 1996.

    MATH  Google Scholar 

  43. Volkonskii, V.A. and Rozanov, Y.A. Some limit theorems for random functions, Part I, Th. Probab. Appl. 4 (1959), 178–197.

    Article  MathSciNet  Google Scholar 

  44. Yoshihara, K. Note on an almost sure invariance principle for some empirical processes, Yokohama Math. J., 27 (1979), 105–110.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radulović, D. (2002). On the Bootstrap and Empirical Processes for Dependent Sequences. In: Dehling, H., Mikosch, T., Sørensen, M. (eds) Empirical Process Techniques for Dependent Data. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0099-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0099-4_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6611-2

  • Online ISBN: 978-1-4612-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics