Skip to main content

Automated Theorem Proving in the Homogeneous Model with Clifford Bracket Algebra

  • Chapter
Applications of Geometric Algebra in Computer Science and Engineering

Abstract

A Clifford algebra has three major multiplications: inner product, outer product and geometric product. Accordingly, the same Clifford algebra has three versions: Clifford vector algebra, which features inner products and outer products of multivectors; Clifford bracket algebra, which features pseudoscalars and inner products of vectors; Clifford geometric algebra, which features geometric products of vectors and multivectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-C. Chou (1988):Mechanical Geometry Theorem Proving, D. Reidel, Dordrecht, Boston.

    MATH  Google Scholar 

  2. S.-C. Chou, X.-S. Gao and J.-Z. Zhang (1994):Machine Proofs in Geometry, World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  3. S. Fevre, D. Wang (1999): Combining Clifford algebraic computing and term-rewriting for geometric theorem proving,Fundamenta Informaticae 39(1–2): 85–104.

    MathSciNet  MATH  Google Scholar 

  4. T. Havel (1991): Some examples of the use of distances as coordinates for Euclidean geometry,J. Symbolic Computat 11: 579–593.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Havel (1995): Geometric algebra and MÃbius sphere geometry as a basis for Euclidean invariant theory.In Invariant Methods in Discrete and Computational Geometry(N. L. White, ed.), pp. 245–256, D. Reidel, Dordrecht.

    Google Scholar 

  6. D. Hestenes, G. Sobczyk (1984):Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht, Boston.

    MATH  Google Scholar 

  7. D. Hestenes (1991): The design of linear algebra and geometry,Acta Appl. Math. 23: 65–93.

    Article  MathSciNet  MATH  Google Scholar 

  8. X.-R. Hou, H. Li, D. Yang and L. Yang (2001): “Russian killer” No. 2: A challenging geometric theorem with machine vs. human proofs,Math. Intelligencer 23(1): 1–7.

    Article  MathSciNet  Google Scholar 

  9. H. Li (1994): New explorations of automated theorem proving in geometries. Doctoral Dissertation, Peking University, Beijing.

    Google Scholar 

  10. H. Li, M.-t. Cheng (1997): Proving theorems in elementary geometry with Clifford algebraic method,Chinese Adv. in Math.26(4): 357–371.

    MathSciNet  MATH  Google Scholar 

  11. H. Li (1997): On mechanical theorem proving in differential geometry — local theory of surfaces,Science in China, Ser. A 40(4): 350–356.

    Article  MATH  Google Scholar 

  12. H. Li, H. Shi (1997): On Erdos’ ten-point problem,Acta Math. Sinica, New Series 13(2): 221–230.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Li, M.-t. Cheng (1998): Clifford algebraic reduction method for mechanical theorem proving in differential geometry,Journal of Automated Reasoning 21: 1–21.

    Article  MathSciNet  Google Scholar 

  14. H. Li (1998): Some applications of Clifford algebra to geometries.In Automated Deduction in Geometries, LNAI1669(X.-S. Gao, D. Wang, L. Yang, eds.), pp. 156–179.

    Google Scholar 

  15. H. Li (2000): Vectorial equation-solving for mechanical geometry theorem proving,Journal of Automated Reasoning 25: 83–121.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Li (2000): Doing geometric research with Clifford algebra.In Clifford Algebras and Their Applications in Mathematical Physics, Volume 1: Algebra and Physics(R. Ablamowicz and B. Fauser eds.), Birkhäuser, Boston, pp. 195–218.

    Google Scholar 

  17. H. Li (2000): Mechanical theorem proving in differential geometry.In Mathematics Mechanization and Applications(X.-S. Gao and D. Wang eds.), Academic Press, London, pp. 147–174.

    Google Scholar 

  18. H. Li (2000): Clifford algebra approaches to automated geometry theorem proving.In Mathematics Mechanization and Applications(X.-S. Gao and D. Wang eds.), Academic Press, London, pp. 205–230.

    Google Scholar 

  19. H. Li, D. Hestenes and A. Rockwood (2000): Generalized homogeneous coordinates for computational geometry.In Geometric Computing with Clifford Algebra(G. Sommer ed.), Springer, Heidelberg, pp. 27–60.

    Google Scholar 

  20. B. Mourrain, N. Stolfi (1995): Computational symbolic geometry.In Invariant Methods in Discrete and Computational Geometry(N. L. White ed.), D. Reidel, Dordrecht, Boston, pp. 107–139.

    Google Scholar 

  21. H. Crapo, J. Richter-Gebert (1994): Automatic proving of geometric theorems.In Invariant Methods in Discrete and Computational Geometry(N. White ed.), D. Reidel, Dordrecht, Boston, pp. 107–139.

    Google Scholar 

  22. J. Richter-Gebert (1995): Mechanical theorem proving in projective geometry,Annals of Math, and Artificial Intelligence 13: 159–171.

    Article  MathSciNet  Google Scholar 

  23. J. Seidel (1952): Distance-geometric development of two-dimensional Euclidean, hyperbolic and spherical geometry I, II,Simon Stevin 29: 32–50, 65–76.

    MathSciNet  MATH  Google Scholar 

  24. B. Sturmfels (1993):Algorithms in Invariant Theory, Springer, Wien.

    Google Scholar 

  25. B. Sturmfels, N. White (1989): GrÃbner bases and invariant theory, Adv. Math.76: 245–259.

    Article  MathSciNet  MATH  Google Scholar 

  26. N. White (1991): Multilinear Cayley factorization,J. Symbolic Computat.11: 421–438.

    Article  MATH  Google Scholar 

  27. W. Whiteley (1991): Invariant computations for analytic projective geometry,J. Symbolic Computat.11: 549–578.

    Article  MathSciNet  MATH  Google Scholar 

  28. W.-t. Wu (1994):Mechanical Theorem Proving in Geometries: Basic Principle(translated from Chinese edition 1984), Springer, Wien.

    Google Scholar 

  29. W.-t. Wu (2000):Mathematics Mechanization. Science Press/Kluwer Academic, Beijing/Dordrecht.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, H. (2002). Automated Theorem Proving in the Homogeneous Model with Clifford Bracket Algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds) Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0089-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0089-5_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6606-8

  • Online ISBN: 978-1-4612-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics