Skip to main content

Unconstrained Iris Recognition in Visible Wavelengths

  • Chapter
  • First Online:
Handbook of Iris Recognition

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

One of the most challenging goals in biometrics research is the development of recognition systems to work in unconstrained environments and without assuming the subjects’ willingness to be recognized. This has led to the concept of noncooperative recognition, which broaden the application of biometrics to forensics/criminal seek domains. In this scope, one active research topic seeks to use as main trait the ocular region acquired at visible wavelengths, from moving targets and large distances. Under these conditions, performing reliable recognition is extremely difficult, because such real-world data have features that are notoriously different from those obtained in the classical constrained setups of currently deployed recognition systems. This chapter discusses the feasibility of iris/ocular biometric recognition: it starts by comparing the main properties of near-infrared and visible wavelength ocular data, and stresses the main difficulties behind the accurate segmentation of all components in the eye vicinity. Next, it summarizes the most relevant research conducted in the scope of visible wavelength iris recognition and relates it to the concept of periocular recognition, which is an attempt to augment classes separability by using—apart from the iris—information from the surroundings of the eye. Finally, the current challenges in this topic and some directions for further research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://socia-lab.di.ubi.pt.

  2. 2.

    http://www.smartsensors.co.uk/products/iris-database/32-000-full-set/.

  3. 3.

    http://biometrics.idealtest.org/.

  4. 4.

    http://www.sciencedirect.com/science/journal/02628856/28/2.

  5. 5.

    http://www.sciencedirect.com/science/journal/01678655/33/8.

References

  1. A. Abhyankar, S. Schuckers, Iris quality assessment and bi-orthogonal wavelet base decoding for recognition. Pattern Recogn. 42, 1878–1894 (2009)

    Google Scholar 

  2. E. Arvacheh, H. Tizhoosh, A study on Segmentation and Normalization for Iris Recognition (2006)

    Google Scholar 

  3. A. Basit, M. Javed, Iris localization via intensity gradient and recognition through bit planes, in Proceedings of the International Conference on Machine Vision (2007), pp. 23–28

    Google Scholar 

  4. S. Bharadwa et al., Periocular biometrics: when iris recognition fails, in Proceedings of the International Conference on Biometrics: Theory, Applications and Systems. U.S.A (2010), pp. 1–6

    Google Scholar 

  5. N. Boddeti, B.V.K.V. Kumar, Extended depth of field iris recognition with correlation filters, in Proceedings of the Computer Vision and Pattern Recognition Workshop on Biometrics. U.S.A (2006), pp. 51–59

    Google Scholar 

  6. K. Bowyer, K. Hollingsworth, P.J. Flynn, Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110.2, 281–307 (2008)

    Google Scholar 

  7. C. Boyce et al., Multispectral iris analysis: a preliminary study, in Proceedings of the First IEEE International Conference on Biometrics: Theory, Applications, and Systems. U.S.A (2008), pp. 1–8

    Google Scholar 

  8. R. Broussard et al., Using artificial neural networks and feature saliency techniques for improved iris segmentation, in Proceedings of the International Joint Conference on Neural Networks (2007), pp. 1283–1288

    Google Scholar 

  9. Y. Chen, S.C. Dass, A.K. Jain, Localized iris image quality using 2-D wavelets, in Proceedings of the International Conference on Biometrics (2006), pp. 373–381

    Google Scholar 

  10. S. Crihalmeanu, A. Ross, Multispectral scleral patterns for ocular biometric recognition. Pattern Recogn. Lett. 33.14, 1860–1869 (2012)

    Google Scholar 

  11. J. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. America A 2.7, 1160–1169 (1985)

    Google Scholar 

  12. J. Daugman, Biometric decision landscapes. University of Cambridge Technical Report, UCAM-CL-TR-1476-2986 482 (2000)

    Google Scholar 

  13. J. Daugman, Probing the uniqueness and randomness of IrisCodes: results from 200 billion iris pair comparisons. Proc. IEEE 94.11, 1927–1935 (2006)

    Google Scholar 

  14. J. Daugman, New methods in iris recognition. IEEE Trans. Syst. Man Cybern.—Part B: Cybern. 37.5, 1167–1175 (2007)

    Google Scholar 

  15. J. Daugman, C. Downing, Effect of severe image compression on iris recognition performance. IEEE Trans. Inform. Forensic Secur. 3.1, 52–61 (2008)

    Google Scholar 

  16. C.I. de l’Eclarirage, Photobiological safety standards for safety standards for lamps (CIE-99), Report of TC 6 (1999), pp. 134–38

    Google Scholar 

  17. M. Dobes et al., Human eye localization using the modified hough transform. Optik 117, 468–473 (2006)

    Article  Google Scholar 

  18. Y. Du, C. Belcher, Z. Zhou, Scale Invariant gabor descriptor-based noncooperative iris recognition. EURASIP J. Adv. Signal Process. 2010.ID 936512 (2010)

    Google Scholar 

  19. C. Fancourt et al., Iris recognition at a distance, in Proceedings of the 2005 IAPR Conference on Audio and Video Based Biometric Person Authentication. U.S.A (2005), pp. 1–13

    Google Scholar 

  20. K. Grabowski et al., Focus assessment issues in iris image acquisition system, in Proceedings of the 14th International Conference MIXDES 2007 (2007), pp. 628–631

    Google Scholar 

  21. I. B. Group

    Google Scholar 

  22. X. He, P. Shi, A new segmentation approach for iris recognition based on hand-held capture device. Pattern Recogn. 40, 1326–1333 (2007)

    Google Scholar 

  23. Y. He, T. Tan, J. Cui, Y. Wang, Key techniques and and methods for imaging iris in focus, in Proceedings of the IEEE International Conference on Pattern Recognition. Hong Kong (2006), pp. 557–561

    Google Scholar 

  24. Z. He, T. Tan, Z. Sun, Iris localization via pulling and pushing, in Proceedings of the 18th International Conference on Pattern Recognition, vol. 4 (2006), pp. 366–369

    Google Scholar 

  25. Z. He et al., Robust eyelid, eyelash and shadow localization for iris recognition, in Proceedings of the International Conference on Image Processing (2009), pp. 265–268

    Google Scholar 

  26. R.S. Holambe, A.D. Rahulkar, Half-Iris feature extraction and recognition using a new class of biorthogonal triplet half-band filter bank and flexible k-out-of-n:A postclassifier. IEEE Trans. Inform. Forensics Secur. 7.1, 230–240 (2012)

    Google Scholar 

  27. K.P. Hollingsworth, K.W. Bowyer, P.J. Flynn, The Importance of small pupils: a study of how pupil dilation affects iris biometrics, in Proceedings of the International Conference on Biometrics (2008), pp. 1–6

    Google Scholar 

  28. K. Hollingsworth, K. Bowyer, P.J.J.J. Flynn, Pupil dilation degrades iris biometric performance. Comput. Vis. Image Underst. 113(1), 150–157 (2009)

    Article  Google Scholar 

  29. H. I. Inc. Invariant radial iris segmentation (2007)

    Google Scholar 

  30. H. I. Inc

    Google Scholar 

  31. A. N. S. Institute. American national standard for the safe use of lasers and LEDs used in optical fiber transmission systems (1988)

    Google Scholar 

  32. J. Jang et al., New focus assessment method for iris recognition systems. Pattern Recogn. Lett. 29(13), 1759–1767 (2008)

    Article  Google Scholar 

  33. N. Kalka et al., Estimating and fusing quality factors for Iris biometric. IEEE Trans. Syst. Man Cybern. Part A 40(3), 509–524 (2010)

    Article  MathSciNet  Google Scholar 

  34. B.J. Kang, K.R. Park, A study on iris image restoration. in Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication (2005), pp. 31–40

    Google Scholar 

  35. B.J. Kang, K.R. Park, A Robust eyelash detection based on iris focus assessment. Pattern Recogn. Lett. 28.13, 1630–1639 (2007)

    Google Scholar 

  36. B.J. Kang, K.R, Park, A new multi-unit iris authentication based on quality assessment and score level fusion for mobile phones. Mach. Vis. Appl. (2009)

    Google Scholar 

  37. G. Kelly, T. Mansfield, D. Chandler, J. Kane, Biometric product testing final report. issue 1.0 (2001)

    Google Scholar 

  38. L. Kennell, R. Ives, R.M. Gaunt, Binary morphology and and local statistics applied to iris segmentation for recognition, in Proceedings of the IEEE International Conference on Image Processing (2006), pp. 293–296

    Google Scholar 

  39. S. Krichen E. Garcia-Salicetti, B. Dorizzi, A new probabilistic iris quality measure for comprehensive noise detection, in Proceedings of the International Conference on Biometrics: Theory, Applications, and Systems (2007), pp. 1–6

    Google Scholar 

  40. A. Kumar, T.-S. Chan, Iris recognition using quaternionic sparse orientation code (QSOC), in Proceedings of the Computer Vision and Pattern Recognition Workshops (2012), pp. 59–64

    Google Scholar 

  41. A. Kumar, T.-S. Chan, C.-W. Tan, Human identification from at-adistance face images using sparse representation of local iris features, in Proceedings of the International Conference on Biometrics (2012), pp. 303–309

    Google Scholar 

  42. P. Li, H. Ma, Iris recognition in non-ideal imaging conditions. Pattern Recogn. Lett. 33.8, 1012–1018 (2012)

    Google Scholar 

  43. P. Li, X. Liu, N. Zhao, Weighted co-occurrence phase histogram for Iris recognition. Pattern Recogn. Lett. 33.8, 1000–1005 (2012)

    Google Scholar 

  44. X. Liu, K.W. Bowyer, P.J. Flynn, Experiments with an improved iris segmentation algorithm, in Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies (2005), pp. 118–123

    Google Scholar 

  45. G. Lu, J. Qi, Q. Liao, A new scheme of Iris image quality assessment, in Proceedings of the Third International Conference on International Information Hiding and Multimedia Signal Processing, vol. 1 (2007), pp. 147–150

    Google Scholar 

  46. L. Maddalena, A. Petrosino, The Sobs algorithm: what are the limits?, in Proceedings of the Computer Vision and Pattern Recognition Workshops (2012), pp. 21–26

    Google Scholar 

  47. M. Marsico, M. Nappi, D. Riccio, Noisy Iris recognition integrated scheme. Pattern Recogn. Lett. 33.8, 1006–1011 (2012)

    Google Scholar 

  48. J.R. Matey et al., Iris Recognition In Less Constrained Environments. Advances in Biometrics: Sensors, Algorithms and Systems (Springer, 2007) pp. 107–131

    Google Scholar 

  49. P. Meredith, T. Sarna, The physical and and chemical properties of eumelanin. Pigm. Cell Res. 19, 572–594 (2006)

    Google Scholar 

  50. C.H. Morimoto, T.T. Santos, A.S. Muniz, Automatic iris segmentation using active near infra red lighting, in Proceedings of the Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2005) (2005), pp. 37–43

    Google Scholar 

  51. K. Nandakumar et al., Quality based score level fusion in multibiometric systems, in Proceedings of the International Conference on Pattern Recognition (2006), pp. 473–476

    Google Scholar 

  52. R. Narayanswamy et al., Extending the imaging volume for biometric iris recognition. Appl. Opt. 44(5), 701–712 (2005)

    Article  Google Scholar 

  53. K. Oh, K.-A. Toh, Extracting sclera features for cancellable identity verification, in Prooceedings of the International Conference on Biometrics (2012), pp. 245–250

    Google Scholar 

  54. K. Oh et al., Combining sclera and and periocular features for multi-modal identity verification. Neurocomputing (2013)

    Google Scholar 

  55. K. Park, J. Kim, A real-time focusing algorithm for iris recognition camera. IEEE Trans. Syst. Man Cybern. 35.3, 441–444 (2005)

    Google Scholar 

  56. U. Park et al., Periocular biometrics in the visible spectrum. IEEE Trans. Inf. Forensics Secur. 6(1), 96–106 (2011)

    Article  Google Scholar 

  57. P. Phillips et al., Overview of the face recognition grand challenge, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1 (2005), pp. 947–954

    Google Scholar 

  58. A. Poursaberi, B.N. Araabi, Iris recognition for partially occluded images methodology and sensitivity analysis. EURASIP J. Adv. Signal Process. 20–32 (2007)

    Google Scholar 

  59. H. Proenca, Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell. 32.8, 1502–1516 (2010)

    Google Scholar 

  60. H. Proenca, Quality assessment of degraded iris images acquired in the visible wavelength. IEEE Trans. Inform. Forensics Secur. 6.1, 82–95 (2011)

    Google Scholar 

  61. H. Proenca, Ocular biometrics by score-level fusion of disparate experts. IEEE Trans. Image Process. 31.12, 5082–5093 (2014)

    Google Scholar 

  62. H. Proença, L.A. Alexandre, A method for the identification of noisy regions in normalized iris images, in Proceedings of the International Conference on Pattern Recognition, vol. 4 (2006), pp. 405–408

    Google Scholar 

  63. H. Proença, L.A. Alexandre, Iris segmentation methodology for noncooperative iris recognition. IEE Proc. Vis. Image Signal Process. 153.2, 199–205 (2006)

    Google Scholar 

  64. H. Proença, L.A. Alexandre, Iris recognition: analysis of the error rates regarding the accuracy of the segmentation stage. Image Vis. Comput. 28, 202–206 (2010)

    Google Scholar 

  65. H. Proença, L.A. Alexandre, Toward covert iris biometric recognition: experimental results from the NICE contests. IEEE Trans. Inform. Forensics Secur. 7.2, 798–808 (2012)

    Google Scholar 

  66. H. Proença et al., The UBIRIS.v2 a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)

    Article  Google Scholar 

  67. N. Puhan, X. Jiang, Robust eyeball segmentation in noisy iris images using fourier spectral density, in Proceeding of the 6th IEEE International Conference on Information, Communications and Signal Processing (2007), pp. 1–5

    Google Scholar 

  68. A. Raffei et al., Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local Radon transform. Pattern Recogn. 46, 2622–2633 (2013)

    Article  Google Scholar 

  69. A. Ross, S. Shah, in Proceedings of the IEEE 2006 Biometric Symposium

    Google Scholar 

  70. K. Roy, P. Battacharya, C.Y. Suen, Iris recognition using shape-guided approach and game theory. Pattern Anal. Appl. 14, 329–348 (2011)

    Google Scholar 

  71. G. Santos, E. Hoyle, A fusion approach to unconstrained Iris recognitio. Pattern Recogn. Lett. 33.8, 984–990 (2012)

    Google Scholar 

  72. S. Schuckers et al., On techniques for angle compensation in nonideal iris recognition. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 37(5), 1176–1190 (2007)

    Article  Google Scholar 

  73. J. Shi, C. Tomasi, Good features to track, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  74. K. Shin et al., New iris recognition method for noisy iris images. Pattern Recogn. Lett. 33(8), 991–999 (2012)

    Article  Google Scholar 

  75. K. Smith et al., Extended evaluation of simulated wavefront coding technology in iris recognition, in Proceedings of the First IEEE International Conference on Biometrics: Theory, Applications, and Systems. U.S.A (2007), pp. 1–7

    Google Scholar 

  76. Z. Sun, T. Tan, Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23.12, 2211–2226 (2009)

    Google Scholar 

  77. R. Szewczyk et al., Reliable iris recognition algorithm based on reverse biorthogonal wavelet transform. Pattern Recogn. Lett. 33(8), 1019–1026 (2012)

    Article  Google Scholar 

  78. C.-W. Tan, A. Kumar, Towards online Iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Process. 22.10, 3751–3765 (2013)

    Google Scholar 

  79. T. Tan, Z. He, Z. Sun, Efficient and and robust segmentation of noisy iris images for non-cooperative segmentation. Image Vis. Comput. 28.2, 223–230 (2010)

    Google Scholar 

  80. T. Tan et al., Noisy iris image matching by using multiple cues. Pattern Recogn. Lett. 33(8), 970–977 (2012)

    Article  Google Scholar 

  81. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cognitive Neurosci. 3.1, 71–86 (1991)

    Google Scholar 

  82. M. Vatsa, R. Singh, A. Noore, Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. Syst. Mans Cybern.-B 38.4, 1021–1035 (2008)

    Google Scholar 

  83. P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2001)

    Google Scholar 

  84. J. Wan, X. He, P. Shi, An iris image quality assessment method based on laplacian of gaussian operation, in Proceedings of the IAPR Conference on Machine Vision Applications (2007), pp. 248–251

    Google Scholar 

  85. Q. Wang et al., Adaboost and and multi-orientation 2D Gaborbased noisy iris recognition. Pattern Recogn. Lett. 33, 978–983 (2012)

    Article  Google Scholar 

  86. Z. Wei et al., Robust and fast assessment of iris image quality, in Proceedings of the International Conference on Biometrics (2006), pp. 464–471

    Google Scholar 

  87. Z. Xu, P. Shi, A robust and and accurate method for pupil features extraction, in Proceedings of the 18th International Conference on Pattern Recognition, vol. 1 (2006), pp. 437–440

    Google Scholar 

  88. N. Yager, T. Dunstone, The biometric menagerie. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 220–230 (2010)

    Article  Google Scholar 

  89. X. Ye et al., Iris image realtime pre-estimation using compound neural network, in Proceedings of the International Conference on Biometrics (2006), pp. 450–456

    Google Scholar 

  90. S. Yoon, K. Bae, K.R. Park, J. Kim, Pan-tilt-zoom Based Iris Image Capturing System for Unconstrained User Environments at a Distance. Lecture Notes in Computer Science, vol. 4642 (2007), pp. 653-662

    Google Scholar 

  91. A. Zaim, Automatic segmentation of iris images for the purpose of identification, in Proceedings of the IEEE International Conference on Image Processing, vol. 3 (2005), pp. 11–14

    Google Scholar 

  92. G. Zhang, M. Salganicoff, Method of measuring the focus of close-up image of eyes (1999)

    Google Scholar 

  93. Z. Zheng, J. Yang, L. Yang, A robust method for eye features extraction on color image. Pattern Recogn. Lett. 26, 2252–2261 (2005)

    Google Scholar 

  94. Z. Zhou et al., A new human identification method: sclera recognition. IEEE Trans. Syst. Man Cybern.—Part A: Syst. Humans 42(3), 571–583 (2012)

    Article  Google Scholar 

  95. J. Zuo, N. Kalka, N.A. Schmid, A robust iris segmentation procedure for unconstrained subject presentation, in Proceedings of the Biometric Consortium Conference (2006), pp. 1–6

    Google Scholar 

  96. J. Zuo, N.A. Schmid, An automatic algorithm for evaluating the precision of iris segmentation, in Proceedings of the IEEE Conference on Biometrics: Theory, Applications and Systems (2008), pp. 1–6

    Google Scholar 

  97. J. Zuo, N.A. Schmid, Global and and local quality measures for NIR iris video, in Proceedings of the International Conference On Computer Vision and Pattern Recognition (2009), pp. 120–125

    Google Scholar 

Download references

Acknowledgments

The financial support given by “IT: Instituto de Telecomunicações” in the scope of the UID/EEA/50008/2013 project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Proença .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Proença, H. (2016). Unconstrained Iris Recognition in Visible Wavelengths. In: Bowyer, K., Burge, M. (eds) Handbook of Iris Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6784-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6784-6_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6782-2

  • Online ISBN: 978-1-4471-6784-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics