Skip to main content

Hydrogen Production from Biowaste

  • Chapter
  • First Online:
BioH2 & BioCH4 Through Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

  • 1466 Accesses

Abstract

In this chapter the feasibility of hydrogen production from organic waste (OW) is highlighted. Possible sources are the residue of municipal solid waste (MSW) sorting by mechanical/physical treatment, the OW separately collected from households and the waste produced along the entire food production chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.E.H. Sims, The Brilliance of Bioenergy, in Business and in Practise (James and James Press, London, 2002)

    Google Scholar 

  2. G. Evans, Biowaste and Biological Waste Treatment (James and James Press, London, 2001)

    Google Scholar 

  3. D.M. Mousdale, Biofuels-Biotechnology, Chemistry and Sustainable Development (CRC Press, Boca Raton, FL, 2008)

    Google Scholar 

  4. H. Röper, Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitt Fachgruppe Umweltchem Ökotoxikol Ges Dtsch Chemie 7(2), 6–12 (2001)

    Google Scholar 

  5. N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  6. L.T. Fan, Y. Lee, D.H. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22(1), 177–199 (1980)

    Article  Google Scholar 

  7. C.E. Wyman, Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series (CRC Press, Taylor and Francis, Washington DC, 1996)

    Google Scholar 

  8. L. Zhu, J.P. O’Dwyer, V.S. Chang, C.B. Granda, M.T. Holtzapple, Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99(19), 3817–3828 (2008)

    Google Scholar 

  9. A. Berlin, M. Balakshin, N. Gilkes, J. Kadla, V. Maximenko, S. Kubo, J. Saddler, Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125(2), 198–209 (2006)

    Article  Google Scholar 

  10. B. Ruggeri, M. Bernardi, T. Tommasi, On the pretreatment of municipal organic waste towards fuel production: a review. Int. J. Environ. Pollut. 49, 226–250 (2012)

    Article  Google Scholar 

  11. C.E. Wyman, Handbook on Bioethanol: Production and Utilization (CRC Press, Boca Raton, FL, 1996)

    Google Scholar 

  12. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  13. W.R. Grous, A.O. Converse, H.E. Grethlein, Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzym. Microb. Technol. 8(5), 274–280 (1986)

    Article  Google Scholar 

  14. T.A. Clark, K.L. Mackie, Steam Explosion of the Softwood Pinus Radiata with sulphur dioxide addition. I. Process optimization. J. Wood Chem. Technol. 7(3), 373–403 (1987)

    Article  Google Scholar 

  15. O.E. Solheim, Method of and arrangement for continuous hydrolysis of organic material. US Patent 0,168,990 (2004)

    Google Scholar 

  16. J. Kim, C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)

    Article  Google Scholar 

  17. V.P. Puri, H. Mamers, Explosive pretreatment of lignocellulosic residues with High-pressure Carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 25, 3149–3161 (1983)

    Article  Google Scholar 

  18. W.P. Xiao, W.W. Clarkson, Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8, 61–66 (1997)

    Article  Google Scholar 

  19. T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney, D.K. Johnson, Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98(1), 112–122 (2007)

    Article  Google Scholar 

  20. L.T. Fan, M.M. Gharpuray, Y.H. Lee, Cellulose Hydrolysis Biotechnology (Monographs Springer, Berlin, 1987)

    Book  Google Scholar 

  21. M. Beccari, M. Majone, M.P. Papini, L. Torrisi, Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation. Water Sci. Technol. 43, 275–282 (2001)

    Google Scholar 

  22. S. Ghosh, M.P. Henry, A. Sajjad, M.C. Mensiger, J.L. Arora, Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci. Technol. 41(3), 101–110 (2000)

    Google Scholar 

  23. N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N.A.A. Rahman, Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manage. 130, 375–385 (2013)

    Article  Google Scholar 

  24. G. De Gioannis, A. Muntoni, A. Polettini, R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–1361 (2013)

    Article  Google Scholar 

  25. K. Vijayaraghavan, D. Ahmad, M.K. Ibrahim, Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrogen Energy 31, 569–579 (2006)

    Article  Google Scholar 

  26. S.W. Van Ginkel, S.E. Oha, B.E. Logan, Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 30, 1535–1542 (2005)

    Article  Google Scholar 

  27. S.K. Han, H.S. Shin, Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy 29, 569–577 (2004)

    Article  Google Scholar 

  28. N.Q. Ren, J.Z. Li, B.K. Li, Y. Wang, S.R. Liu, Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int. J. Hydrogen Energy 31, 2147–2157 (2006)

    Article  Google Scholar 

  29. H.H.P. Fang, C.L. Li, T. Zhang, Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy 31, 683–692 (2006)

    Article  Google Scholar 

  30. Y. Akutsu, D.Y. Lee, Y.Y. Li, T. Noike, Hydrogen production potential and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy 34, 5365–5372 (2009)

    Article  Google Scholar 

  31. M. Cui, Z. Yuan, X. Zhi, J. Shen, Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971–7978 (2009)

    Article  Google Scholar 

  32. E. Castello, C. Garcia y Santos, T. Iglesias, G. Paolino, J. Wenzel, L. Borzacconi, C. Etchebehere, Feasibility of biohydrogen production from cheese whey using a UASB: links between microbial community and reactor performance, Int. J. Hydrogen Energy 34, 5674–5682 (2009)

    Google Scholar 

  33. S. Jayalakshmi, K. Joseph, V. Sukumaran, Biohydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 34, 8854–8858 (2009)

    Article  Google Scholar 

  34. X. Wu, J. Zhu, C. Dong, C. Miller, Y. Li, L. Wang, W. Yao, Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 34, 6636–6645 (2009)

    Article  Google Scholar 

  35. K. Vijayaraghavan, D. Ahmad, Biohydrogen generation from palm oil effluent using anaerobic contact filter. Int. J. Hydrogen Energy 31, 1284–1291 (2006)

    Article  Google Scholar 

  36. B. Ruggeri, T. Tommasi, Efficiency and efficacy of pretreatment and bioreaction for bio-H2 energy production from organic waste. Int. J. Hydrogen Energy 37, 6491–6502 (2012)

    Article  Google Scholar 

  37. INRAN, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. http://nut.entecra.it/646/tabelle_di_composizione_degli_alimenti.html. Accessed 15 Oct 2014

  38. B. Ruggeri, A.C. Luongo Malave, M. Bernardi, D. Fino, Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Manage. 33, 2225–2233 (2013)

    Google Scholar 

  39. I. Del Campo, I. Alegría, M. Zazpe, M. Echeverría, I. Echeverría, Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Prod. 24(3), 214–221 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Ruggeri .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Ruggeri, B., Tommasi, T., Sanfilippo, S. (2015). Hydrogen Production from Biowaste. In: BioH2 & BioCH4 Through Anaerobic Digestion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6431-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6431-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6430-2

  • Online ISBN: 978-1-4471-6431-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics