Skip to main content

Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This article presents the specific classes of reactions considered for modeling the oxidation of the two types of oxygenated molecules which are the most usually considered in biofuels: alcohols and esters. Using models for hydrocarbon oxidation as a reference, this paper also reports the major changes to be considered for the kinetic data of the main reaction classes which are the same as those taken into account for non-oxygenated reactants. Details are given in the case of hydrogen atom abstractions, radical decompositions by β-scission, RO2· radical chemistry, with especially intramolecular isomerizations, and reactions leading to unsaturated products and HO2 radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Primary OH group: –CH2–OH, secondary: –CH–OH, tertiary: –C–OH.

  2. 2.

    Primary H-atom: –CH2–H, secondary: –CH–H, tertiary: –C–H.

References

  • Bennadji H, Coniglio L, Billaud F et al (2011) Oxidation of small unsaturated methyl and ethyl esters. Int J Chem Kin 43:204–218

    Article  Google Scholar 

  • Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Black G, Curran HJ, Pichon S et al (2010) Bio-butanol: combustion properties and detailed chemical kinetic model. Combust Flame 157:363–373

    Article  Google Scholar 

  • Bounaceur R, Warth V, Sirjean B et al (2009) Influence of the position of the double bond on the autoignition of linear alkenes at low temperature. Proc Combust Inst 32:387–394

    Article  Google Scholar 

  • Buda F, Bounaceur R, Warth V et al (2005) Progress towards a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K. Combust Flame 142:170–186

    Article  Google Scholar 

  • Bui B, Zhu R, Lin M (2002) Thermal decomposition of iso-propanol: first-principles prediction of total and product-branching rate constants. J Chem Phys 117:11188–11195

    Article  Google Scholar 

  • Cai J, Zhang L, Yang J et al (2012) Experimental and kinetic modeling study of tert-butanol combustion at low pressure. Energy 43:94–102

    Article  Google Scholar 

  • Cancino LR, Fikri M, Oliveira AAMC et al (2010) Measurement and chemical kinetics modeling of shock-induced ignition of ethanol-air Mixtures. Energ Fuels 24:2830–2840

    Article  Google Scholar 

  • Cooke DF, Dodson MG, Williams A (1991) A shock-tube study of the ignition of methanol and ethanol with oxygen. Combust Flame 13:233–236

    Google Scholar 

  • Cord M, Husson B, Lizardo Huerta JC et al (2012) Study of the low temperature oxidation of propane. J Phys Chem A 116:12214–12228

    Article  Google Scholar 

  • Curran HJ, Gaffuri P, Pitz WJ et al (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149–177

    Article  Google Scholar 

  • Curran HJ, Fischer SL, Dryer FL (2000) Reaction kinetics of dimethyl ether. II: low-temperature oxidation in flow reactors. Int J Chem Kin 32:741–759

    Article  Google Scholar 

  • Da Silva G, Bozzelli JW, Liang L, Farrell JT (2009) Ethanol oxidation: kinetics of the α-hydroxyethyl radical + O2 reaction. J Phys Chem A 113:8923–8933

    Article  Google Scholar 

  • Dagaut P, Sarathy SM, Thomson MJ (2009) A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proc Combust Inst 32:229–237

    Article  Google Scholar 

  • Dayma G, Togbé C, Dagaut P (2009) Detailed kinetic mechanism for the oxidation of vegetable oil methyl esters: new evidence from methyl heptanoate. Energ Fuels 23:4254–4268

    Article  Google Scholar 

  • Dean AM, Bozzelli JW (2000) Combustion chemistry of nitrogen. In: Gardiner WC (ed) Gas-phase combustion chemistry. Springer, New York

    Google Scholar 

  • DeSain JD, Klippenstein SJ, Miller JA, Taatjes CA (2003) Measurements, theory, and modeling of OH formation in ethyl + O2 and propyl + O2 reactions. J Phys Chem A 107:4415–4427

    Article  Google Scholar 

  • Diévart P, Won SH, Dooley S et al (2012) A kinetic model for methyl decanoate combustion. Combust Flame 159:1793–1805

    Article  Google Scholar 

  • Dooley S, Curran HJ, Simmie JM (2008) Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate. Combust Flame 153:2–32

    Article  Google Scholar 

  • El-Nahas AM, Navarro MV, Simmie JM et al (2007) Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate. J Phys Chem A 111:3727–3739

    Article  Google Scholar 

  • Farooq A, Ren W, Lam KY et al (2012) Shock tube studies of methyl butanoate pyrolysis with relevance to biodiesel. Combust Flame 159:3235–3241

    Article  Google Scholar 

  • Fisher EM, Pitz WJ, Curran HJ et al (2000) Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc Combust Inst 28:1579–1586

    Article  Google Scholar 

  • Frassoldati A, Cuoci A, Faravelli T et al (2010) An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust Flame 175:2–16

    Article  Google Scholar 

  • Frassoldati A, Grana R, Faravelli T et al (2012) Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust Flame 159:2295–2311

    Article  Google Scholar 

  • Gaïl S, Sarathy SM, Thomson MJ et al (2008) Experimental and chemical kinetic modeling study of small methyl esters oxidation: methyl (E)-2-butenoate and methyl butanoate. Combust Flame 155:635–650

    Article  Google Scholar 

  • Glaude PA, Battin-Leclerc F, Judenherc B et al (2000) Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. Combust Flame 121:345–355

    Article  Google Scholar 

  • Glaude PA, Herbinet O, Bax S et al (2010) Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combust Flame 157:2035–2050

    Article  Google Scholar 

  • Goldaniga A, Faravelli T, Ranzi E et al (1998) Oxidation of oxygenated octane improvers: MTBE, ETBE, DIPE, and TAME. Twenty-seventh symposium (international) on combustion, The Combustion Institute, Pittsburgh, pp 353–360

    Google Scholar 

  • Grana R, Frassoldati A, Faravelli T et al (2010) An experimental and kinetic modeling study of combustion of isomers of butanol. Combust Flame 157:2137–2154

    Article  Google Scholar 

  • Grana R, Frassoldati A, Cuoci A et al (2012a) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters. Energy 43:124–139

    Article  Google Scholar 

  • Grana R, Frassoldati A, Saggese C et al (2012b) A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate–Note II: Lumped kinetic model of decomposition and combustion of methyl esters up to methyl decanoate. Combust Flame 159:2280–2294

    Article  Google Scholar 

  • Hakka MH, Bennadji H, Biet J et al (2010) Oxidation of methyl and ethyl butanoates. Int J Chem Kinet 42:226–252

    Article  Google Scholar 

  • Harper MR, Van Geem KM, Pyl SP et al (2011) Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combust Flame 158:16–41

    Article  Google Scholar 

  • Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154:507–528

    Google Scholar 

  • Herbinet O, Pitz WJ, Westbrook CK (2010) Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame 157:893–908

    Article  Google Scholar 

  • Herbinet O, Glaude PA, Warth V et al (2011a) Experimental and modeling study of the thermal decomposition of methyl decanoate. Combust Flame 158:1288–1300

    Article  Google Scholar 

  • Herbinet O, Biet J, Hakka MH et al (2011b) Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proc Combust Inst 33:391–398

    Article  Google Scholar 

  • Heufer KA, Sarathy SM, Curran HJ et al (2012) A detailed chemical kinetic modeling study of n-pentanol oxidation. Energy Fuels 26:6678–6685

    Google Scholar 

  • Heufer KA, Bugler J, Curran HJ (2013) A comparison of longer alkane and alcohol ignition including new experimental results for n-pentanol and n-hexanol. Proc Combust Inst 34:511–518

    Article  Google Scholar 

  • Karwat DMA, Wagnon SW, Teini PD, Wooldridge MS (2011) On the chemical kinetics of n-butanol: ignition and speciation studies. J Phys Chem A 115:4909–4921

    Article  Google Scholar 

  • Kohse-Höinghaus K, Oßwald P, Cool TA et al (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed 49:3572–3597

    Article  Google Scholar 

  • Komninos NP, Rakopoulos CD (2012) Modeling HCCI combustion of biofuels: a review. Renew Sust Energy Rev 16:1588–1610

    Article  Google Scholar 

  • Lai JYW, Lin KC, Violi A (2011) Biodiesel combustion: advances in chemical kinetic modeling. Prog Energ Combust Sci 37:1–14

    Article  Google Scholar 

  • Lee C, Vranckx S, Heufer KA et al (2012) On the chemical kinetics of ethanol oxidation: shock tube, rapid compression machine and detailed modeling study. Z Phys Chem 226:1–28

    Article  Google Scholar 

  • Leplat N, Dagaut P, Togbé C, Vandooren J (2011) Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust Flame 158:705–725

    Article  Google Scholar 

  • Luo YR (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Google Scholar 

  • Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kin 31:183–220

    Article  Google Scholar 

  • Mehl M, Vanhove G, Pitz WJ et al (2008) Oxidation and combustion of the n-hexene isomers: a wide range kinetic modeling study. Combust Flame 155:756–772

    Article  Google Scholar 

  • Miyoshi A, Matsui H, Washida N (1990) Rate of reaction of hydroxyalkyl radicals with molecular oxygen. J Phys Chem 94:3016–3019

    Article  Google Scholar 

  • Moss JT, Berkowitz AM, Oehlschlaeger MA et al (2008) An experimental and kinetic modeling study of the oxidation of the four Isomers of butanol. J Phys Chem A 112:10843–10855

    Article  Google Scholar 

  • Muller C, Michel V, Scacchi G et al (1995) A computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase. J Chim Phys 92:1154–1177

    Google Scholar 

  • Naik CV, Westbrook CK, Herbinet O et al (2011) Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate. Proc Combust Inst 33:383–389

    Article  Google Scholar 

  • Pang GA, Hanson RK, Golden DM, Bowman CT (2012) Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol. J Phys Chem A 116:9607–9613

    Article  Google Scholar 

  • Rauk A, Boyd RJ, Boyd SL et al (2003) Alkoxy radicals in the gaseous phase: β-scission reactions and formation by radical addition to carbonyl compounds. Can J Chem 81:431–442

    Article  Google Scholar 

  • Román-Leshkov Y, Barrett C, Liu Z et al (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  Google Scholar 

  • Rosado-Reyes CM, Tsang W (2012a) Shock tube study on the thermal decomposition of n-butanol. J Phys Chem A 116:9825–9831

    Article  Google Scholar 

  • Rosado-Reyes CM, Tsang W (2012b) Shock tube studies on the decomposition of 2-butanol. J Phys Chem A 116:9599–9606

    Article  Google Scholar 

  • Saggese C, Frassoldati A, Cuoci A et al (2013) A lumped approach to the kinetic modeling of pyrolysis and combustion of biodiesel fuels. Proc Combust Inst 34:427–434

    Article  Google Scholar 

  • Sarathy SM, Vranckx S, Yasunaga K et al (2012) A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust Flame 159:2028–2055

    Article  Google Scholar 

  • Saxena P, Williams FA (2007) Numerical and experimental studies of ethanol flames. Proc Combust Inst 31:1149–1156

    Article  Google Scholar 

  • Sirjean B, Fournet R, Glaude PA et al (2013) A shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran. J Phys Chem A 117:1371–1392

    Article  Google Scholar 

  • Somers KP, Simmie JM, Gillepsie F et al (2013) A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proc Combust Inst 34:225–232

    Article  Google Scholar 

  • Stark MS, Waddington RW (1995) Oxidation of propene in the gas phase. Int J Chem Kin 27:123–151

    Article  Google Scholar 

  • Sun H, Bozzelli JW, Law CK (2007) Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II. J Phys Chem A 111:4974–4986

    Article  Google Scholar 

  • Taatjes CA, Hansen N, McIlroy A et al (2005) Enols are common intermediates in hydrocarbon oxidation. Science 308:1887

    Article  Google Scholar 

  • Tian Z, Yuan T, Fournet R et al (2011) An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combust Flame 158:756–773

    Article  Google Scholar 

  • Togbé C, Dagaut P, Mzé-Ahmed A (2010) Experimental P, Kinetic detailed modeling study of 1-hexanol oxidation in a pressurized jet-stirred reactor and a combustion bomb. Energ Fuels 24:5859–5875

    Article  Google Scholar 

  • Togbé C, Halter F, Foucher F (2011) Experimental and detailed kinetic modeling study of 1-pentanol oxidation in a JSR and combustion in a bomb. Proc Combust Inst 33:367–374

    Article  Google Scholar 

  • Touchard S, Fournet R, Glaude PA et al (2005) Modeling of the oxidation of large alkenes at low temperature. Proc Combust Inst 30:1073–1081

    Article  Google Scholar 

  • Tran LS, Sirjean B, Glaude P-A et al. (2012) Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy 43:4–18

    Google Scholar 

  • Tsang W (2004) Energy transfer effects during the multichannel decomposition of ethanol. Int J Chem Kin 36:456–465

    Article  Google Scholar 

  • Tsujimura T, Pitz WJ, Gillespie F et al (2012) Development of isopentanol reaction mechanism reproducing autoignition character at high and low temperatures. Energy Fuels 26:4871–4886

    Article  Google Scholar 

  • Vasu SS, Davidson DF, Hanson RK et al (2010) Measurements of the reaction of OH with n-butanol at high-temperatures. Chem Phys Lett 497:26–29

    Article  Google Scholar 

  • Vranckx S, Heufer KA, Lee C et al (2011) Role of peroxy chemistry in the high-pressure ignition of n-butanol—experiments and detailed kinetic modelling. Combust Flame 158:1444–1455

    Article  Google Scholar 

  • Walton S, Wooldridge M, Westbrook C (2009) An experimental investigation of structural effects on the auto-ignition properties of two C5 esters. Proc Combust Inst 32:255–262

    Article  Google Scholar 

  • Welz O, Zádor J, Savee JD et al (2012) Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550–750 K) oxidation chemistry of isopentanol. Phys Chem Chem Phys 14:3112

    Article  Google Scholar 

  • Welz O, Savee JD, Eskola AJ, Sheps L, Osborn DL, Taatjes CA (2013a) Low-temperature combustion chemistry of biofuels: pathways in the low-temperature (550–700 K) oxidation chemistry of isobutanol and tert-butanol. Proc Combust Inst 34:493–500

    Article  Google Scholar 

  • Welz O, Klippenstein S, Harding LB et al (2013b) Unconventional peroxy chemistry in alcohol oxidation: the water elimination pathway. J Phys Chem Lett 3:350–354

    Article  Google Scholar 

  • Westbrook CK, Naik CV, Herbinet O et al (2011) Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust Flame 158:742–755

    Article  Google Scholar 

  • Wiberg K, Waldron R (1991) Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4–C13 monocyclic lactones. Strain energies and conformations. J Am Chem Soc 113:7697–7705

    Article  Google Scholar 

  • Yang B, Westbrook CK, Cool TA et al (2013) Photoionization mass spectrometry and modeling study of premixed flames of three unsaturated C5H8O2 esters. Proc Combust Inst 34:443–451

    Article  Google Scholar 

  • Yasunaga K, Simmie JM, Curran HJ et al (2011) Detailed chemical kinetic mechanisms of ethyl methyl, methyl tert-butyl and ethyl tert-butyl ethers: the importance of uni-molecular elimination reactions. Combust Flame 158:1032–1036

    Article  Google Scholar 

  • Yasunaga K, Mikajiri T, Sarathy SM et al (2012) A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combust Flame 159:2009–2027

    Article  Google Scholar 

  • Yeung C, Thomson M (2013) Experimental and kinetic modeling study of 1-hexanol combustion in an opposed-flow diffusion flame. Proc Combust Inst 34:795–802

    Article  Google Scholar 

  • Zádor J, Fernandes RX, Georgievskii Y et al (2009) The reaction of hydroxyethyl radicals with O2: A theoretical analysis and experimental product study. Proc Combust Inst 32:271–277

    Article  Google Scholar 

  • Zhao Z, Chaos M, Kazakov A et al (2008) Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int J Chem Kin 40:1–18

    Article  Google Scholar 

  • Zheng J, Truhlar DG (2010) Kinetics of hydrogen-transfer isomerizations of butoxyl radicals. Phys Chem Chem Phys 12:7782–7793

    Article  Google Scholar 

  • Zhou CW, Simmie JM, Curran HJ (2011) Rate constants for hydrogen-abstraction by.OH for n-butanol. Combust Flame 158:726–731

    Article  Google Scholar 

  • Zhou CW, Simmie JM, Curran HJ (2012) Rate Constants for Hydrogen Abstraction by HO2 from n-Butanol. Int J Chem Kinet 44:155–164

    Article  Google Scholar 

Download references

Acknowledgments

This work was made in the frame of COST Action CM0901. F. Battin-Leclerc and P. A. Glaude thank the European Commission (“Clean ICE” ERC Advanced Research Grant) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Battin-Leclerc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Battin-Leclerc, F., Curran, H., Faravelli, T., Glaude, P.A. (2013). Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics