Skip to main content

Natural Language Processing in Health Care and Biomedicine

  • Chapter
  • First Online:
Biomedical Informatics

Abstract

After reading this chapter, you should know the answers to these questions:

  • Why is natural language processing important?

  • What are the potential uses for natural language processing (NLP) in the biomedical and health domains?

  • What forms of knowledge are used in NLP?

  • What are the principal techniques of NLP?

  • What are challenges for NLP in the clinical, biological, and health consumer domains?

This chapter is adapted from an earlier version in the third edition authored by Carol Friedman and Stephen B. Johnson.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless stated otherwise, the general domain and the topics of text materials discussed in this chapter refer to biomedicine and health.

  2. 2.

    http://www.ncbi.nlm.nih.gov/pmc (Accessed 4/26/13).

  3. 3.

    http://www.dbmi.pitt.edu/nlpfront. (Accessed 4/26/13).

  4. 4.

    orbit.nlm.nih.gov (Accessed 4/19/13).

  5. 5.

    www.nltk.org (Accessed 4/18/13).

  6. 6.

    www.alias-i.com/lingpipe/ (Accessed 4/18/13).

  7. 7.

    http://incubator.apache.org/opennlp/ (Accessed 4/19/13).

  8. 8.

    http://uima.apache.org/index.html (Accessed 4/19/13).

References

  • Aronow, D.B., Cooley, J.R., & Soderland, S. (1995). Automated identification of episodes of asthma exacerbation for quality measurement in a computer-based medical record. Proceedings of the Annual Symposium on Computer Applications in Medical Care, 309ā€“313.

    Google ScholarĀ 

  • Aronow, D., Feng, F., & Croft, W. B. (1999). Ad hoc classification of radiology reports. Journal of the American Medical Informatics Association: JAMIA, 6(5), 343ā€“411.

    ArticleĀ  Google ScholarĀ 

  • Aronson, A.R. (2001). Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program. Proceedings of AMIA Symposium, 17ā€“21.

    Google ScholarĀ 

  • Baud, R., Rassinoux, A. M., & Sherrer, J. R. (1992). Natural language processing and semantical representation of medical texts. Methods of Information in Medicine, 31, 117ā€“125.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Baud, R., Lovis, C., Rassinoux, A. M., Michel, P. A., & Scherrer, J. R. (1998). Automatic extraction of linguistic knowledge from an international classification. Studies in Health Technology and Informatics, 52(Pt 1), 581ā€“585.

    PubMedĀ  Google ScholarĀ 

  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L. (2003) GenBank. Nucleic Acids Research, 31(1):23ā€“27. Available at http://www.ncbi.nlm.nih.gov

    Google ScholarĀ 

  • Bishop, C. (2007). Pattern recognition and machine learning. New York: Springer.

    Google ScholarĀ 

  • Blake JA, Richardson JE, Bult CJ, Kadin JA, Eppig JT, & the members of the Mouse Genome Database Group. (2003). MGD: The mouse genome database. Nucleic Acids Research, 31, 193ā€“195. Available at http://www.informatics.jax.org/

    Google ScholarĀ 

  • Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., Oā€™Donovan, C., Phan, I., Pilbout, S., & Schneider, M. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL. Nucleic Acids Research. 31, 365ā€“370. Available at http://us.expasy.org/sprot/

  • Cao, Y., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J. J., Ely, J., & Yu, H. (2011). AskHERMES: An online question answering system for complex clinical questions. Journal of Biomedical Informatics, 44(2), 277ā€“288.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Caporaso, J. G., Deshpande, N., Fink, J. L., Bourne, P. E., Cohen, K. B., & Hunter, L. (2008). Intrinsic evaluation of text mining tools may not predict performance on realistic tasks. Proceedings of the Pacific Symposium Biocomputing, 13, 640ā€“651.

    Google ScholarĀ 

  • Chapman, W. C., Dowling, J. N., & Wagner, M. M. (2004). Fever detection from free-text clinical records for biosurveillance. Journal of Biomedical Informatics, 37(2), 120ā€“127.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Christensen, L., Haug, P., & Fiszman, P. (2002). MPLUS: a probabilistic medical language understanding system. Proceedings of the ACL BioNLP, 29ā€“36.

    Google ScholarĀ 

  • Chuang, J.H., Friedman, C., & Hripcsak, G. (2002). A comparison of the charlson comorbidities derived from medical language processing and administrative data. Proceedings of the AMIA Symposium, 160ā€“164.

    Google ScholarĀ 

  • Deleger, L., Merkel, M., & Zweigenbaum, P. (2009). Translating medical terminologies through word alignment in parallel text corpora. Journal of Biomedical Informatics, 42(4), 692ā€“701.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Demner-Fushman, D., & Lin, J. (2007). Answering clinical questions with knowledge-based and statistical techniques. Computational Linguistics, 33(1), 63ā€“103.

    ArticleĀ  Google ScholarĀ 

  • Elhadad, N. (2006). Comprehending technical texts: predicting and defining unfamiliar terms. Proceedings AMIA Symposium, 239ā€“243.

    Google ScholarĀ 

  • Elhadad, N., Kan, M. Y., Klavans, J. L., & McKeown, K. R. (2005). Customization in a unified framework for summarizing medical literature. Artificial Intelligence in Medicine, 33(2), 179ā€“198.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Evans, D. A., Cimino, J. J., Hersh, J. J., Huff, S. M., & Bell, D. S. (1994). Toward a medical-concept representation language. The Canon Group. Journal of the American Medical Informatics Association: JAMIA, 1(3), 207ā€“217.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Eysenbach, G., & Till, J. E. (2001). Ethical issues in qualitative research on internet communities. BMJ, 323(7321), 1103ā€“1105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Friedman, C., Alderson, P. O., Austin, J., Cimino, J. J., & Johnson, S. B. (1994). A general natural language text processor for clinical radiology. Journal of the American Medical Informatics Association: JAMIA, 1(2), 161ā€“174.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Friedman, C., Huff, S. M., Hersh, W. R., Pattison-Gordon, E., & Cimino, J. J. (1995). The canon groupā€™s effort: Working toward a merged model. Journal of the American Medical Informatics Association: JAMIA, 2(1), 4ā€“18.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Friedman, C., Kra, P., Krauthammer, M., Yu, H., & Rzhetsky, A. (2001). GENIES: A natural-langauge processing system for the extraction of molecular pathways from journal articles. Bioinformatics, 17(suppl), S74ā€“S82.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Friedman, C., Shagina, L., Lussier, Y., & Hripcsak, G. (2004). Automated encoding of clinical documents based on natural language processing. Journal of the American Medical Informatics Association: JAMIA, 11(5), 392ā€“402.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Fukuda, K., Tamura, A., Tsunoda, T., & Takagi, T. (1998). Toward information extraction: identifying protein names from biological papers. Proceedings of the Pacific Symposium on Biocomputing, 707ā€“718.

    Google ScholarĀ 

  • Grishman, R., & Kittredge, R. (Eds.). (1986). Analyzing language in restricted domains: Sublanguage description and processing. Hillsdale: Erlbaum Associates.

    Google ScholarĀ 

  • Grishman, R., Sager, N., Raze, C., & Bookchin, B. (1973). The linguistic string parser. Proceedings of the National Computer Conference, 42, 427ā€“434.

    Google ScholarĀ 

  • Grosz, B., Joshi, A., & Weinstein, S. (1995). Centering: A framework for modeling the local coherence of discourse. Computational Linguistics, 2(21), 203ā€“225.

    Google ScholarĀ 

  • Hahn, U., Romacker, M., & Schulz, S. (1999). Discourse structures in medical reports ā€“ watch out! the generation of referentially coherent and valid text knowledge bases in the MEDSYNDIKATE system. International Journal of Medical Informatics, 53(1), 1ā€“28.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hahn, U., Romacker, M., & Schulz, S. (2002). MEDSYNDIKATE: A natural language system for the extraction of medical information from finding reports. International Journal of Medical Informatics, 67(1/3), 63ā€“74.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Harkema, H., Dowling, J. N., Thornblad, T., & Chapman, W. W. (2009). ConText: An algorithm for determining negation, experiencer, and temporal status from clinical reports. Journal of Biomedical Informatics, 42(5), 839ā€“851.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Harris, Z. (1991). A theory of language and information ā€“ a mathematical approach. New York: Oxford University Press.

    Google ScholarĀ 

  • Harris, Z., Gottfried, M., Ryckman, T., Mattick, P., Daladier, A., Harris, T., & Harris, S. (1989). The form of information in science ā€“ analysis of an immunology sublanguage. Dordrecht: Kluwer Academic.

    Google ScholarĀ 

  • Haug, P. J., Ranum, D. L., & Frederick, P. R. (1990). Computerized extraction of coded findings from free-text radiology reports. Radiology, 174, 543ā€“548.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Haug, P., Koehler, S., Lau, L.M., Wang, P., Rocha, R., & Huff, S. (1994). A natural language understanding system combining syntactic and semantic techniques. Proceedings of the Annual Symposium on Computer Applications in Medical Care, 247ā€“251.

    Google ScholarĀ 

  • Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A. (2005). Overview of BioCreAtIvE: Critical assessement of information extraction for biology. BMC Bioinformatics, 6(Suppl 1), S1.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hobbs, J. R., Appelt, D. E., Bear, J., Israel, D., Kameyama, M., Stickel, M., et al. (1996). FASTUS: A cascaded finite-state transducer for extracting information from natural-language text. In Finite state devices for natural language processing. Cambridge, MA: MIT Press.

    Google ScholarĀ 

  • Hripcsak, G., Friedman, C., Alderson, P. O., DuMouchel, W., Johnson, S. B., & Clayton, P. D. (1995). Unlocking data from narrative reports: A study of natural language processing. Annals of Internal Medicine, 122(9), 681ā€“688.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Humphreys, K., Demetriou, G., & Gaizauskas, R. (2000). Two applications of information extraction to biological science journal articles: enzyme interactions and protein structures. Proceedings of the Pacific Symposium on Biocomputing, 505ā€“516.

    Google ScholarĀ 

  • Issel-Tarver, L., Christie, K.R., Dolinski, K., Andrada, R., Balakrishnan, R., Ball, C.A., Binkley, G., Dong, S., Dwight, S.S., Fisk, D.G., Harris, M., Schroeder, M., Sethuraman, A., Tse, K., Weng, S., Botstein, D., & Cherry, J.M. (2001). Saccharomyces genome database. Methods Enzymol, 350, 329ā€“346. Available at http://www.yeastgenome.org/

    Google ScholarĀ 

  • Jenssen, T.K., & Vinterbo, S. (2000). A set-covering approach to specific search for literature about human genes. Proceedings of the AMIA Symposium, 384ā€“388.

    Google ScholarĀ 

  • Jordan, D. A., McKeown, K. R., Concepcion, K. J., Feiner, S. K., & Hatzivassiloglou, V. (2001). Generation and evaluation of intraoperative inferences for automated health care briefings on patient status after bypass surgery. Journal of the American Medical Informatics Association: JAMIA, 8(3), 267ā€“280.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jurafsky, D., & Martin, J. H. (2009). Speech and language processing. An introduction to natural language processing, computational linguistics and speech recognition. Upper Saddle River: Prentice Hall.

    Google ScholarĀ 

  • Keselman, A., Tse, T., Crowell, J., Browne, A., Ngo, L., & Zeng, Q. (2007). Assessing consumer health vocabulary familiarity: An exploratory study. Journal of Medical Internet Research, 9(1), e5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kim, J. D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003). GENIA corpus ā€“ semantically annotated corpus for bio-textmining. Bioinformatics, 19(suppl 1), i180ā€“i182.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kittredge, R., & Lehrberger, J. (Eds.). (1982). Sublanguage ā€“ studies of language in restricted semantic domains. New York: De Gruyter.

    Google ScholarĀ 

  • Lindberg, D. A. B., Humphreys, B. L., & McCray, A. T. (1993). The unified medical language system. Methods of Information in Medicine, 32, 281ā€“291.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Manning, C., & SchĆ¼tze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.

    Google ScholarĀ 

  • Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19, 313ā€“330.

    Google ScholarĀ 

  • Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M., & Lassar, A. B. (1997). Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell, 89, 139ā€“148.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Minsky, M. (1975). A framework for representing knowledge. In P. H. Wintson (Ed.), The psychology of computer vision. New York: McGraw-Hill.

    Google ScholarĀ 

  • Mutalik, P. G., Deshpande, A., & Nadkarni, P. M. (2001). Use of general-purpose negation detection to augment concept indexing of medical documents: A quantitative study using the UMLS. Journal of the American Medical Informatics Association: JAMIA, 8(6), 598ā€“609.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nadkarni, P., Chen, R., & Brandt, C. (2001). UMLS concept indexing for production databases: A feasibility study. Journal of the American Medical Informatics Association: JAMIA, 8(1), 80ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Palmer, M., Gildea, D., & Kingsbury, P. (2005). The proposition bank: An annotated corpus of semantic roles. Computational Linguistics, 31(1), 71ā€“105.

    ArticleĀ  Google ScholarĀ 

  • Park, J. C., Kim, H. S., & Kim, J. J. (2001). Bidirectional incremental parsing for automatic pathway identification with combinatory categorial grammar. Proceedings of the Pacific Symposium on Biomcomputing, 6, 396ā€“407.

    Google ScholarĀ 

  • Pestian, J.P., & Matykiewicz, P. (2008). Classification of suicide notes using natural language processing. Proceedings of the ACL BioNLP, 96ā€“97.

    Google ScholarĀ 

  • Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D.J., Johnson, N., Cohen, K.B., & Duch, W. (2007). A shared task involving multi-label classification of clinical free text. Proceedings of the Workshop on BioNLP, 97ā€“104

    Google ScholarĀ 

  • Rindflesch, T.C., Tanabe, L., Weinstein, J.N., & Hunter, L. (2000). EDGAR: extraction of drugs, genes and relations from the biomedical literature. Proceedings of the Pacific Symposium Biocomputing, 517ā€“528.

    Google ScholarĀ 

  • Saeed, M., Lieu, C., Raber, G., & Mark, R. G. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. Computers in Cardiology, 29, 641ā€“644.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sager, N. (1972). Syntactic formatting of science information. Proceedings of the AFIPS (pp. 791ā€“800). In Kittredge, R., &Lehrberger, J., (Eds.), Reprinted in Sublanguage: Studies of language in restricted semantic domains (pp. 9ā€“26). Berlin (1982): Walter de Gruyter.

    Google ScholarĀ 

  • Sager, N. (1978). Natural language information formatting: The automatic conversion of texts to a structured data base. In M. C. Yovits (Ed.), Advances in computers (Vol. 17, pp. 89ā€“162). New York: Academic Press.

    Google ScholarĀ 

  • Sager, N. (1981). Natural language information processing: A computer grammer of english and its applications. Reading: Addison-Wesley.

    Google ScholarĀ 

  • Sager, N., Friedman, C., & Lyman, M. (1987). Medical language processing ā€“ computer management of narrative data. Reading: Addison-Wesley.

    Google ScholarĀ 

  • Sekimizu, T., Park, H. S., & Tsujii, J. (1998). Identifying the interaction between genes and gene products based on frequently seen verbs in Medline abstracts. Genome Informatics Ser Workshop on Genome Informatics, 9, 62ā€“71.

    CASĀ  Google ScholarĀ 

  • Spyns, P. (1996). Natural language processing in medicine: An overview. Methods of Information in Medicine, 35, 285ā€“301.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • The FlyBase Consortium. (2003). The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Research, 31, 172ā€“175. Available at http://flybase.org/

    Google ScholarĀ 

  • The Gene Ontology Consortium. (2003). Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25ā€“29. Available at http://www.geneontology.org/

    Google ScholarĀ 

  • Uzuner, O. (2009). Recognizing obesity and comorbidities in sparse data. Journal of the American Medical Informatics Association: JAMIA, 16(4), 561ā€“570.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Uzuner, O., Goldstein, I., Luo, Y., & Kohane, I. (2008). Identifying patient smoking status from medical discharge records. Journal of the American Medical Informatics Association: JAMIA, 15(1), 14ā€“24.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Uzuner, O., Solti, I., & Cadag, E. (2010). Extracting medication information from clinical text. Journal of the American Medical Informatics Association: JAMIA, 17(5), 514ā€“518.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Uzuner, O., South, B. R., Shen, S., & Duvall, S. L. (2011). 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association: JAMIA, 18(5), 552ā€“556.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Vincze, V., Szarvas, G., Farkas, R., Mora, G., & Csirik, J. (2008). The BioScope corpus: Biomedical texts annotated for uncertainty, negation, and their scopes. BMC Bioinformatics, 9(S11), S9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wang, X., Hripcsak, G., Markatou, M., & Friedman, C. (2009a). Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: A feasibility study. Journal of the American Medical Informatics Association: JAMIA, 16(3), 328ā€“337.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wang, Y., Xiao, J., Suzek, T. O., et al. (2009b). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37, W623ā€“W633.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Weeber, M., Mork, J., & Aronson, A. (2001). Developing a test collection for biomedical word sense disambiguation. Proceedings of the AMIA Symposium, 746ā€“750.

    Google ScholarĀ 

  • Weizenbaum, J. (1966). A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36ā€“45.

    ArticleĀ  Google ScholarĀ 

  • Winograd, T. (1972). Understanding natural language. Cognitive Psychology, 3(1), 1ā€“191.

    ArticleĀ  Google ScholarĀ 

  • Woods, W. (1973). Progress in NLU ā€“ an application to lunar geology. Proceeding of AFIPS, 42, 441ā€“450.

    Google ScholarĀ 

  • Yakushiji, A., Tateisi, Y., Miyao, Y., & Tsujii, J. (2001). Event extraction from biomedical papers using a full parser. Proceedings of the Pacific Symposium Biocomputing, 6, 408ā€“419.

    Google ScholarĀ 

  • Zhang, H., Fiszman, M., Shin, D., Miller, C. M., Rosemblat, G., & Rindflesch, T. C. (2011). Degree centrality for semantic abstraction summarization of therapeutic studies. Journal of Biomedical Informatics, 44(5), 830ā€“838.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Friedman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Friedman, C., Elhadad, N. (2014). Natural Language Processing in Health Care and Biomedicine. In: Shortliffe, E., Cimino, J. (eds) Biomedical Informatics. Springer, London. https://doi.org/10.1007/978-1-4471-4474-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4474-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4473-1

  • Online ISBN: 978-1-4471-4474-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics