Skip to main content

Abstract

This chapter describes the basic properties of capacitive sensor technologies and their use in various kinds of sensors in industrial applications. Physical properties as well as some limitations of capacitive sensing are described here. The use of capacitive sensors with hazardous fluids, such as gasoline based fuels, and various configurations of capacitive sensors used in the application of fluid level measurement in dynamic environments are described. In brief, this chapter provides information on capacitive sensing technology and its use in dynamic and hostile environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serway, R. A., & Jewett, J. W. (2004). Capacitance and dielectrics. In Physics for scientists and engineers (6th ed., pp. 796–820). Scotland: Thomson.

    Google Scholar 

  2. Robbins, A., & Miller, W. (2000). Circuit analysis: Theory and practice. Albany: Delmar.

    Google Scholar 

  3. Scherz, P. (2000). Practical electronics for inventors. New York: McGraw-Hill.

    Google Scholar 

  4. Jewett, J. W., & Serway, R. A. (2004). Physics for scientists and engineers (6th ed.). Scotland: Thomson.

    Google Scholar 

  5. Bolton, W. (2006). Capacitance. Engineering science (p. 161). Oxford: Newnes.

    Google Scholar 

  6. Benenson, W., Stoecker, H., Harris, W. J., & Lutz, H. (2002). Handbook of physics. New York: Springer.

    Book  Google Scholar 

  7. Avallone, E. A., & Baumeister, T., I. I. I. (1996). Marks’ standard handbook for mechanical engineers. New York: McGraw-Hill.

    Google Scholar 

  8. Samatham, R., Kim, K. J., Dogruer, D., Choi, H. R., & Konyo, M. (2007). Active polymers: An overview. In K. J. Kim & S. Tadokoro (Eds.), Electroactive polymers for robotic applications: Artificial muscles and sensors (p. 18). London: Springer.

    Google Scholar 

  9. Fischer-Cripps, A. C. (2002). Newnes interfacing companion. Oxford: Newnes.

    Google Scholar 

  10. Eren, H., & Kong, W. L. (1999). Capacitive sensors—displacement. In J. G. Webster (Ed.), The measurement, instrumentation, and sensors handbook. Boca Raton: CRC Press.

    Google Scholar 

  11. Gibilisco, S. (2001). The illustrated dictionary of electronics. New York: McGraw-Hill.

    Google Scholar 

  12. Pallás-Areny, R., & Webster, J. G. (2001). Reactance variation and electromagnetic sensors. In Sensors and signal conditioning (pp. 207–273). New York: Wiley.

    Google Scholar 

  13. Kilian, C. T. (2000). Sensors. In Modern control technology: Components and systems (pp. 220–294). Novato: Delmar Thomson Learning.

    Google Scholar 

  14. Baxter, L. K. (1997). Capacitive sensors—design and applications. In R. J. Herrick (Ed.) IEEE Press.

    Google Scholar 

  15. Ripka, P., & Tipek, A. (2007). Level position and distance. In Modern sensors handbook (pp. 305–348). Newport Beach: ISTE USA.

    Google Scholar 

  16. Wilson, T. V. How the iPhone works. HowStuffWorks, Inc; [cited]; Available from: http://electronics.howstuffworks.com/iphone2.htm.

  17. LION-Precision (2006). Capacitive sensor operation and optimization, technotes, no. LION PRECISION.

    Google Scholar 

  18. Gründler, P. (2007). Conductivity sensors and capacitive sensors. In Chemical sensors: An introduction for scientists and engineers (pp. 123–132). Berlin: Springer.

    Google Scholar 

  19. Pallás-Areny, R., & Webster, J. G. (2001). Sensors and signal conditioning. New York: Wiley.

    Google Scholar 

  20. Analog Devices, Inc. High g Accelerometers. Analog Devices, Inc.; [cited]; Available from: http://www.analog.com/en/mems/high-g-accelerometers/products/index.html.

  21. Kuttruff, H. (1991). Ultrasonics—fundamentals and applications. London: Elsevier Applied Science.

    MATH  Google Scholar 

  22. Maier, L. C. (1990). Inventor simmonds precision products, Inc., assignee. Apparatus and method for determining liquid levels. Patent 4908783, 28 April 1987.

    Google Scholar 

  23. Qu, W., Gamel, J. F., Mannebach, H., & Jirgal, L. M., (2003, October 16). Inventors; Hydac Electronic GmbH., assignee. Device and method for measuring capacitance and determining liquid level. Patent 7161361 .

    Google Scholar 

  24. Pardi, R., & Marchi, G. (1981, March 10). Inventors; Logic S.p.A., assignee. System for sensing and signalling the amount of fuel in a vehicle tank, particularly aircraft tank. Patent 4487066.

    Google Scholar 

  25. Yamamoto, T., Hayashi, S., & Kondo, M. (2005, January 5). Inventors; NGK SPARK PLUG CO (JP), assignee. Liquid state detecting element and liquid state detecting sensor. Patent 7064560.

    Google Scholar 

  26. Tward, E., & Junkins, P. (1982, February 3) Inventors; Tward 2001 Limited (Los Angeles, CA) assignee. Multi-capacitor fluid level sensor. Patent 4417473.

    Google Scholar 

  27. Tward, E. (1982, February 3 ). Inventor Tward 2001 Limited, assignee. Fluid level sensor. Patent 4417472.

    Google Scholar 

  28. Wood, T. J. (1978, December 21). Inventor FORD MOTOR CO, assignee. Capacitive liquid level sensor. Patent 4194395.

    Google Scholar 

  29. Peter, H. (1987, May 26). Inventor Aisin Seiki Kabushiki Kaisha, assignee. Capacitive probe for use in a system for remotely measuring the level of fluids.

    Google Scholar 

  30. Toth, F. N., Meijer, G. C. M., & Lee, M. van der. (1996). A new capacitive precision liquid-level sensor. Conference on Precision Electromagnetic Measurements Digest (pp. 356–357).

    Google Scholar 

  31. Lenormand, R., & Chaput, C. (2003, March 26). Inventors; Institut Francais du Petrole assignee. Capacitive probe for measuring the level of an electricity-conducting liquid. Patent 6844743.

    Google Scholar 

  32. Atherton, K. W., Clow, C. R., & Mawet, P. H. (1986, December 9). Inventors; CATERPILLAR INC (US) assignee. Dielectric liquid level sensor and method. Patent 4806847.

    Google Scholar 

  33. Lawson, J. C. (1995, June 6). Inventor Chrysler Corporation assignee. Method for collecting liquid temperature data from a fuel tank. Patent 5613778.

    Google Scholar 

  34. Mcculloch, M. L., Bruer, R. E., & Byram, T. P. (1997, September 9). Inventors; AMERICAN MAGNETICS INC (US) assignee. Capacitive level sensor and control system. Patent 6016697.

    Google Scholar 

  35. Hochstein, P. A. (1990, Feburuary 7). Inventor TELEFLEX INC (US), assignee. Capacitive liquid sensor. Patent 5005409.

    Google Scholar 

  36. Fozmula. Capacitive liquid level sensor is intelligent: EngineeringTalk; 2006 [updated 11/12/2006; cited]; Available from: http://www.engineeringtalk.com/news/foz/foz109.html.

  37. Wang, C., & Shida, K. (2007). A new method for on-line monitoring of brake fluid condition using an enclosed reference probe. Measurement Science and Technology, 18(11), 3625.

    Article  Google Scholar 

  38. Wallrafen, W. (1999, April 13). Inventor Mannesmann VDO, assignee. Sensor for accurate measurement of levels in irregularly shaped tanks. Patent 6293145.

    Google Scholar 

  39. Takita, M. (2004, September 15). Inventor Environmentally compensated capacitive sensor. Patent 20060055415.

    Google Scholar 

  40. Wells, P. (1990, July 23) Inventor IIMorrow, Inc., assignee. Capacitive fluid level sensor. Patent 5042299.

    Google Scholar 

  41. Stern, D. M. (1989, April 10). Inventor Drexelbrook Engineering Company, assignee. Two-wire compensated level measuring instrument. Patent 5049878.

    Google Scholar 

  42. Gimson, C. J. (1988, September 12). Inventor Mestra A. G., assignee. Capacitive sensor and circuit for detecting contamination of guard electrode. Patent v. 1988.

    Google Scholar 

  43. Park, K. M., & Nassar, M. A. (1997, March 6). Inventors; Kavlico Corporation, assignee. Capacitive oil deterioration and contamination sensor. Patent 5824889.

    Google Scholar 

  44. Kuttruff, H. (1991). Oscillator. In Ultrasonics—fundamentals and applications (pp. 51–52). New York: Elsevier Applied Science.

    Google Scholar 

  45. Fraden, J. (2004). Interface electronics circuits. In Handbook of modern sensors: Physics, designs, and applications (pp. 151–225). New York: Springer.

    Google Scholar 

  46. Ibrahim, R. A. (2005). Introduction. In Liquid sloshing dynamics: Theory and applications (p. xvii). Cambridge: Cambridge University Press.

    Google Scholar 

  47. Ibrahim, R. A. (2005). Liquid sloshing dynamics: Theory and applications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  48. Wiesche, S. (2003). Computational slosh dynamics: Theory and industrial application. Computational Mechanics, 30(5–6), 374–387.

    Article  MATH  Google Scholar 

  49. Dai, L., & Xu, L. (2006). A numerical scheme for dynamic liquid sloshing in horizontal cylindrical containers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(7), 901–918.

    Article  MathSciNet  Google Scholar 

  50. Modaressi-Tehrani, K., Rakheja, S., & Sedaghati, R. (2006). Analysis of the overturning moment caused by transient liquid slosh inside a partly filled moving tank. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(3), 289–301.

    Article  Google Scholar 

  51. Pal, N. C., Bhattacharyya, S. K., & Sinha, R. K. (2001). Experimental investigation of slosh dynamics of liquid-filled containers. Experimental Mechanics, 41, 63–69.

    Article  Google Scholar 

  52. Dongming, L., & Pengzhi, L. (2008). A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 227(8), 3921–3939.

    Article  MATH  Google Scholar 

  53. Kita, K. E., Katsuragawa, J., & Kamiya, N. (2004). Application of trefftz-type boundary element method to simulation of two-dimensional sloshing phenomenon. Engineering Analysis with Boundary Elements, 28(2004), 677–683.

    Article  MATH  Google Scholar 

  54. Pal, N. C., Bhattacharyya, S. K., & Sinha, P. K. (2001). Experimental investigation of slosh dynamics of liquid-filled containers. Experimental Mechanics, 41(1), 63–69.

    Article  Google Scholar 

  55. Arafa, M. (2006). Finite element analysis of sloshing in rectangular liquid-filled tanks. Journal of Vibration and Control, 13(7), 883–903.

    Article  MathSciNet  Google Scholar 

  56. Nawrocki, R. (1990, December 17). Inventor FORD MOTOR CO (US) assignee. Apparatus and method for gauging the amount of fuel in a vehicle fuel tank subject to tilt. Patent 5072615.

    Google Scholar 

  57. Lee, C. S. (1994, April 4). Inventor Lee, Calvin S. (Laguna Niguel, CA), assignee. Variable fluid and tilt level sensing probe system. Patent 5423214.

    Google Scholar 

  58. Shiratsuchi, T., Imaizumi, M., & Naito, M. (1993). High accuracy capacitance type fuel sensing system. SAE, 930359, 111–117.

    Google Scholar 

  59. Tsuchida, T., Okada, K., Okuda, Y., Kondo, N., & Shinohara, T. (1981, March 12). Inventors; Toyota Jidosha Kogyo Kabushiki Kaisha. (1981). assignee. Method of and apparatus for indicating remaining fuel quantity for vehicles. Patent 4402048.

    Google Scholar 

  60. Kobayashi, H., & Obayashi, H. (1983, June 8). Inventors; Nissan Motor Company, Limited, assignee. Fuel volume measuring system for automotive vehicle. Patent 4611287.

    Google Scholar 

  61. Guertler, T., Hartmann, M., Land, K., & Weinschenk, A. (1997, January 27). Inventors; DAIMLER BENZ AG (DE) assignee. Process for determining a liquid quantity, particularly an engine oil quantity in a motor vehicle. Patent 5831154.

    Google Scholar 

  62. Kobayashi, H., & Kita, T. (1982, December 30). Inventors; Nissan Motor Company, Limited assignee. Fuel gauge for an automotive vehicle. Patent 4470296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edin Terzic .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Terzic, E., Terzic, J., Nagarajah, R., Alamgir, M. (2012). Capacitive Sensing Technology. In: A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments. Springer, London. https://doi.org/10.1007/978-1-4471-4060-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4060-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4059-7

  • Online ISBN: 978-1-4471-4060-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics