Skip to main content

Normal and Prosthesic Hip Biomechanics

  • Chapter
Biomechanics and Biomaterials in Orthopedics

Abstract

To assess the diseased human hip, it is necessary to appreciate the motions, forces, and stresses in both normal and abnormal states. Only with this basic understanding can the clinician or engineer bring lasting relief to the patient suffering from hip disease or malfunction. To this end, the following discussion of the biomechanics of the normal and damaged hip is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robbins CE. Anatomy and biomechanics. In: Fagerson TL, editor. The Hip Handbook. Boston: Butterworth-Heinemann, 1998;l-37.

    Google Scholar 

  2. Nordin M, Frankel VH. Biomechanics of the hip. In: Nordin M, Frankel VH, editors. Basic Biomechanics of the Musculoskeletal System. Philadelphia: Lea and Febiger, 1989;135–51.

    Google Scholar 

  3. Rydell N. Biomechanics of the Hip Joint. Clin Orth Rel Res 1973;92:6–15.

    Article  Google Scholar 

  4. Radin EL. Biomechanics of the Human Hip. Clin Orth Rel Res 1980;152:28–34.

    Google Scholar 

  5. Greenwald AS. Biomechanics of the hip. In: Steinburg ME, editor. The Hip and Its Disorders. Philadelphia: WB Saunders, 1991;47–55.

    Google Scholar 

  6. Chung SMK. Hip Disorders in Infants and Children. Philadelphia: Lea and Febiger, 1981.

    Google Scholar 

  7. Harty M. Anatomy. In: Steinburg ME, editor. The Hip and Its Disorders. Philadelphia: WB Saunders, 1991; 27–46.

    Google Scholar 

  8. Olson SA, Bay BK, Hamel A. Biomechanics of the hip joint and the effects of fracture of the acetabulum. Clin Orth Rel Res 1997;339:92–104.

    Article  Google Scholar 

  9. Kapandji IA. The Physiology of the Joints — Vol. 2: Lower Limb. Edinburgh and London: Churchill Livingstone, 1970;64.

    Google Scholar 

  10. Bombelli R. Structure and Function in Normal and Abnormal Hips. New York: Springer-Verlag, 1993.

    Book  Google Scholar 

  11. Hurwitz DE, Andriacchi TP. Biomechanics of the Hip. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The Adult Hip. Philadelphia: Lippincott-Raven, 1998; 75–85.

    Google Scholar 

  12. Ferguson S. Biomechanics of the Acetabular Labrum. 2000. PhD Thesis. Queen’s University, Kingston, ON, Canada.

    Google Scholar 

  13. Terayama K, Takei T, Nakada K. Joint Space of the Human Knee and Hip Joint under Static Load. Engineering in Medicine 1980;9:67–74.

    Article  Google Scholar 

  14. Mow VC, Soslowsky LJ. Lubrication and Wear of Joints. In: Mow VC, Hayes WC, editors. Basic Orthopaedic Biomechanics. New York: Raven Press, 1991;245–92.

    Google Scholar 

  15. Mow VC, Foster FJ. Tribology. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The Adult Hip. Philadelphia: Lippincott-Raven, 1998;217–29.

    Google Scholar 

  16. Armstrong CG, Bahrani AS, Gardner DL. In vitro measurement of articular cartilage deformation in the intact human hip joint under load. JBJS 1979;61A: 744–55.

    Google Scholar 

  17. Davy DT, Kotzar GM, Brown RH et al. Telemetric force measurements across the hip joint after total arthroplasty. JBJS 1989;70A:45–50.

    Google Scholar 

  18. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993;16:969–90.

    Article  Google Scholar 

  19. Rushfeldt PD, Mann RW, Harris WH. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum — 2. Instrumented endoprosthesis measurement of articular surface pressure distribution. J Biomech 1981; 14: 315–23.

    Article  PubMed  CAS  Google Scholar 

  20. Carlson CE. A proposed method for measuring pressures on the human hip joint. Experimental Mechanics 1971;499–506.

    Google Scholar 

  21. Carlson CE, Mann RW, Harris WH. A radio telemetry device for monitoring cartilage surface pressures in the human hip. IEEE Trans Biomed Eng 1974;BME-21: 257–64.

    Article  Google Scholar 

  22. Brown TD, Shaw DT. In vitro contact stress distributions in the natural human hip. J Biomech 1983; 16: 373–84.

    Article  PubMed  CAS  Google Scholar 

  23. Adams D, Kempson GE, Swanson SAV. Direct measurement of local pressures in the cadaveric human hip joint. Med & Biol Eng 8c Comput 1978;16:113–15.

    Article  CAS  Google Scholar 

  24. Day WH, Swanson SAV, Freeman MAR. Contact pressures in the loaded human cadaver hip. JBJS 1975; 57B:302–13.

    Google Scholar 

  25. Li J, Wyss UP, Costigan PA, Deluzio KJ. An integrated procedure to assess knee-joint kinematics and kinetics during gait using an optoelectric system and standardized X-rays. J Biomed Eng 1993;15:392–400.

    Article  PubMed  CAS  Google Scholar 

  26. Paul JP. Bio-engineering studies of the forces transmitted by joints, Part II — Engineering analysis. In: Kenedi R, editor. Biomechanics and Related Bio-engineering Topics. Oxford: Pergamon, 1965;369–80.

    Google Scholar 

  27. Rohrle H, Schölten R, Sigolotto C et al. Joint forces in the human pelvis-leg skeleton during walking. J Biomech 1984;17:409–24.

    Article  PubMed  CAS  Google Scholar 

  28. Sorbie C, Zalter R. Bio-engineering studies of the forces transmitted by joints, Part I — The phasic relationship of the hip muscles in walking. In: Kenedi R, editor. Biomechanics and Related Bioengineering Topics. Oxford: Pergamon, 1965;359–67.

    Google Scholar 

  29. Tanaka Y. Gait analysis of patients with osteoarthritis of the hip and those with total arthroplasty. Bio-Med Mater Eng 1998;8:187–96.

    CAS  Google Scholar 

  30. Miyanaga Y, Fukubayashi T, Kurosawa H. Contact study of the hip joint. Arch Orthop Trauma Surg 1984; 103: 13–17.

    Article  PubMed  CAS  Google Scholar 

  31. Afoke NYP, Byers PD, Hutton WC. Contact pressures in the human hip joint. JBJS 1987;69B:536–41.

    Google Scholar 

  32. Harrison MHM, Schajowitcz F, Trueta J. Osteoarthritis of the hip: a study of the nature and evolution of the disease. JBJS 1953;35B:593

    Google Scholar 

  33. Strange C. The Hip. London: W Heinemann, 1969.

    Google Scholar 

  34. Olson SA, Bay BK, Chapman MW et al. Biomechanical consequences of fracture and repair of the posterior wall of the acetabulum. JBJS 1995;77A:1184–92.

    Google Scholar 

  35. Olson SA, Bay BK, Pollak AN et al. The effect of variable size posterior wall acetabular fractures on contact characteristics of the hip joint. J Orth Trauma 1996; 395–402.

    Google Scholar 

  36. Poole AR, Rizkalla G, Reiner A, Ionescu M, Bogoch E. Changes in the extracellular matrix of articular cartilage in human osteoarthritis. In: Hirohata R, Mizuno K, Matsubara T, editors. Trends in Research and Treatment of Joint Diseases. Tokyo: Springer-Verlag, 1992.

    Google Scholar 

  37. Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech 1995;28:715–24.

    Article  PubMed  CAS  Google Scholar 

  38. Lim L-A, Carmichael SW, Cabanela ME. Biomechanics of total hip arthroplasty. Anat Rec 1999;257:110–16.

    Article  PubMed  CAS  Google Scholar 

  39. Maquet PGJ, editor. Biomechanics of the Hip: As applied to Osteoarthritis and Related Conditions. New York: Springer-Verlag, 1985.

    Google Scholar 

  40. Pauwels F. Biomechanics of the Normal and Diseased Hip: Theoretical Foundation, Technique and Results of Treatment. Berlin: Springer-Verlag, 1976.

    Google Scholar 

  41. Williams JL. Biomechanics of total hip replacement. In: Steinburg ME, editor. The Hip and its Disorders. Philadelphia: WB Saunders, 1991;876–904.

    Google Scholar 

  42. Huiskes R, Verdonschot N. Biomechanics of artificial joints: the hip. In: Mow VC, Hayes WC, editors. Basic Orthopaedic Biomechanics. Philadelphia: Lippincott-Raven, 1997;395–460.

    Google Scholar 

  43. Siopack JS, Jergesen HE. Total hip arthroplasty. West J Med 1995;162:243–9.

    PubMed  CAS  Google Scholar 

  44. Wroblewski M. Cementless versus cemented total hip arthroplasty: a scientific controversy? Orthop Clin North Am 1993;24:591–7.

    PubMed  CAS  Google Scholar 

  45. English TA, Kilvington M. In vivo records of hip loads using a femoral implant with telemetric output: a preliminary report. J Biomed Eng 1979;1:111.

    Article  PubMed  CAS  Google Scholar 

  46. Frankel VH, Burstein AH, Lygre L, Brown RH. The telltale nail. JBJS 1971;53A:1232.

    Google Scholar 

  47. Lygre L. The loads produced on the hip joint by nursing procedures: A telemetrization study. 1970. MS Thesis. Case Western Reserve University.

    Google Scholar 

  48. Milde FK. Loads on femoral head during nursing care by a telemetrized nail-plate. 1974. MS Thesis. Case Western Reserve University.

    Google Scholar 

  49. Johnson RC, Smidt GL. Measurements of hip-joint motion during walking: evaluation of an electrogonio-metric method. JBJS 1969;51A:1083–94.

    Google Scholar 

  50. Murray MP. Gait as a normal pattern of movement. Am J Phys Med 1967;46:290–333.

    PubMed  CAS  Google Scholar 

  51. Paul JP. Forces at the hip joint. 1967. PhD Thesis. University of Chicago.

    Google Scholar 

  52. Rydell N. Forces in the hip joint. Part II — Intravital measurements. In: Kenedi R, editor. Biomechanics and Related Bioengineering Topics. Oxford: Pergamon, 1965;351–7.

    Google Scholar 

  53. Rydell N. Forces acting on the femoral head prosthesis. A study on strain gauge pressure prostheses in living persons. Acta Orthop Scand 1966;S88:1–132.

    Google Scholar 

  54. Chao EY-S, Kaufman KR, Stauffer RN. Biomechanics. In: Morrey BF, editor. Joint Replacement Arthroplasty. New York: Churchill Livingstone, 1991;529–46.

    Google Scholar 

  55. Bartel DL, Burstein AH, Toda MD, Edwards DL. The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants. J Biomech Eng 1985;107:193–9.

    Article  PubMed  CAS  Google Scholar 

  56. Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness and material on stresses in ultrahigh molecular weight components for total joint replacement. JBJS 1986;68A:1041–51.

    Google Scholar 

  57. Pedersen DR, Crowninshield RD, Brand RA, Johnston RC. An axisymmetric model of acetabular components in total hip arthroplasty. J Biomech 1982; 15:305–16.

    Article  PubMed  CAS  Google Scholar 

  58. Robinson RP, Simonian PT, Gradisar IM, Ching RP. Joint motion and surface contact area related to component position in total hip arthroplasty. JBJS 1997;79B:140–6.

    Article  Google Scholar 

  59. Lewis G. Contact stress at articular surfaces in total joint replacements. Part 1: Experimental methods. Bio-Med Mater Eng 1998;8:91–110.

    CAS  Google Scholar 

  60. Zdero R. A new diagnostic ultrasound technique for studying TKR contact mechanics. 1999. PhD Thesis. Queen’s University, Kingston, ON, Canada.

    Google Scholar 

  61. Zdero R, Fenton PV, Rudan J, Bryant JT. Fuji film and ultrasound measurement of total knee arthroplasty contact areas. J Arthroplasty 2001;16(3):367–375.

    Article  PubMed  CAS  Google Scholar 

  62. Lewis G. Contact stress at articular surfaces in total joint replacements. Part 2: Analytical and numerical methods. Bio-Med Mater Eng 1998;8:259–78.

    CAS  Google Scholar 

  63. Stewart T, Shaw D, Auger DD, Stone M, Fisher J. Experimental and theoretical study of the contact mechanics of five total knee replacements. Proc Inst Mech Engrs (Part H) 1995;209:225–31.

    Article  CAS  Google Scholar 

  64. Clark IC, Good V, Williams P, Oparaugo P, Oonishi H, Fujisawa A. Simulator Wear study of high-dose gamma-irradiated UHMWPE Cups. 23rd Ann Meeting of the Society for Biomaterials, 1997,71.

    Google Scholar 

  65. Jasty M, Bragdon CR, O’Connor DO, Muratoglu O, Permnath V, Merrill E. Marked improvement in the wear resistance of a new form of UHMWPE in a physiologic hip simulator. Trans Soc Biomater 1997;20: 157.

    Google Scholar 

  66. McKellop H, Shen F, Yu Y, Lu B, Salovey R, Campbell P. Effect of sterilization method and other modifications on the wear resistance of UHMWPE acetabular cups. In: Anonymous Polyethylene Wear in Orthopaedic Implants Workshop. Minneapolis: Society for Bio-materials, 1997;20–31.

    Google Scholar 

  67. McKellop H, Shen F, Salovey R. Extremely low wear of gamma crosslinked/remelted UHMW polyethylene acetabular cups. 44th Ann Meeting of the Orthopedic Research Society (ORS). 1998;97–17.

    Google Scholar 

  68. Oonishi H, Saito M, Kadoya Y. Wear of high-dose gamma irradiated polyethylene in total joint replacement — long term radiological evaluation. 44th Ann Meeting of the Orthopedic Research Society (ORS). 1998;97–17.

    Google Scholar 

  69. Wang A, Essner A, Polineni V, Sun D, Stark C, Dumbleton J. Joint space of the human knee and hip joint under static load. In: Polyethylene Wear in Orthopaedic Implants Workshop. Minneapolis: Society for Biomaterials, 1997;4–18.

    Google Scholar 

  70. Wroblewski BM, et al. Prospective clinical and joint simulator studies of a new total hip arthroplasty using alumina ceramic heads and cross-linked polyethylene cups. JBJS 1996;78B:280–5.

    Google Scholar 

  71. Bankston AB, Keating EM, Ranawat C, Faris PM, Ritter MA. Comparison of polyethylene wear in machined versus molded polyethylene. Clin Orth Rel Res 1995; 317:37–43.

    Google Scholar 

  72. Cornwall GB, Bryant JT, Hansson CM, Rudan J, Kennedy LA, Cooke TDV. A quantitative technique for reporting the surface degradation patterns of UHMWPe components of retrieved total knee replacements. J Appl Biomater 1995;6:9–18.

    Article  PubMed  CAS  Google Scholar 

  73. Schmalzried TP, et al. Quantitative assessment of walking activity after total hip or knee replacement. JBJS 1998;80A:54–59.

    Google Scholar 

  74. Schmalzried TP, Callaghan JJ. Wear in total hip and knee replacements. JBJS 1999;81A:115–36.

    Google Scholar 

  75. McKellop H, Campbell P, Park SH, et al. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orth Rel Res 1995;311:3–20.

    Google Scholar 

  76. Schmalzried TP, Dovey FJ, McKellop H. Commentary: The multifactorial nature of polyethylene wear in vivo. JBJS 1998;80A:1234–42.

    Google Scholar 

  77. Lewis G. Design issues in clinical studies of the in vivo volumetric wear rate of polyethylene bearing components. JBJS 2000;82A:281–7.

    Google Scholar 

  78. Kesteris U, Jonsson K, Robertsson O, Onnerfalt R, Wingstrand H. Polyethylene wear and synovitis in total hip arthroplasty. J Arthroplasty 1999;14:138–43.

    Article  PubMed  CAS  Google Scholar 

  79. Robertsson O, Wingstrand H, Kesteris U et al. Intracapsular pressure and loosening of hip prostheses: preoperative measurements in 18 hips. Acta Orthop Scand 1997;68:231.

    Article  PubMed  CAS  Google Scholar 

  80. Wingstrand H, Wingstrand A. Biomechanics of the hip joint capsule — a mathematical model and clinical implications. Clin Biomech 1997;22:273.

    Article  Google Scholar 

  81. Schmalzried TP, Akizuki KH, Fedenko AN, Mirra J. The role of joint fluid in periarticular osteolysis. JBJS 1997;79A:447.

    Google Scholar 

  82. ASTM. Standard practice for reciprocating pin-on-flat evaluation of friction and wear properties of polymeric materials for use in total joint prostheses (ASTM F732–82). In: American Society for Testing Materials. Philadelphia: ASTM, 1991;262–9.

    Google Scholar 

  83. Ramamurti BS, Bragdon CR, O’Connor DO, et al. Loci of movement of selected points on the femoral head during normal gait. J.Arthroplasty 1996;11: 845–52.

    Article  PubMed  CAS  Google Scholar 

  84. Pedersen DR, Brown TD, Maxian TA, Callaghan JJ. Temporal and spatial distributions of directional counterface motion at the acetabular bearing surface in total hip arthroplasty. Iowa Orthop J 1998; 18:43–53.

    PubMed  CAS  Google Scholar 

  85. Bragdon CR, O’Connor DO, Lowenstein JD, Jasty M, Synuita WD. The importance of multidirectional motion on the wear of polyethylene. Proc Inst Mech Eng (Part H) 1996;210:157–65.

    Article  CAS  Google Scholar 

  86. McKellop H, Clarke I, Markolf KL, Amstutz HA. Friction and wear properties of polymer, metal and ceramic prosthetic joint materials evaluated on a multichannel screening device. J Biomed Mater Res 1981;15:619–53.

    Article  PubMed  CAS  Google Scholar 

  87. McConnell AJ, Bryant JT. Differences in surface damage and morphology between conventional and highly cross-linked UHMWPE in multidirectional testing at high contact stresses. Tampa, FL, USA. 28th Ann Meeting Transactions, Society for Biomaterials, 2002, p. 583.

    Google Scholar 

  88. Benjamin JB, Gie GA, Lee AJ. Cementing technique and the effects of bleeding. JBJS 1987;69B:620.

    Google Scholar 

  89. Markolf KL. Biomechanics of the hip. In: Amstutz HC, editor. Hip Arthroplasty. New York: Churchill Livingstone, 1991;15–23.

    Google Scholar 

  90. Charnley J. Low-friction Arthroplasty of the Hip: Theory and Practice. Berlin: Springer, 1979.

    Book  Google Scholar 

  91. Howmedica-Osteonics, see web site for more information about Crossfireâ„¢ polyethylene: http://www.osteonics.com/osteonics/hips/crossfire/oscfsplash.htm.

  92. Sulzer Medica, see official Sulzer Medica world wide web sites http://www.durasul.com and http://www.sulzerorthoeu.ch/technology/tribology/durasul/index.html, Sulzer Orthopedics Ltd., 2000.

  93. Zimmer. Longevity Crosslinked Polyethylene: Design Rationale, commercial booklet from Zimmer, Inc., 1999.

    Google Scholar 

  94. Bargar WL. New developments and future trends in total hip replacement. In: Steinburg ME, editor. The Hip and Its Disorders. Philadelphia: WB Saunders, 1991;1125–33.

    Google Scholar 

  95. Willmann G. Ceramics for total hip replacement -what a surgeon should know. Orthopedics 1998;21: 173–7.

    PubMed  CAS  Google Scholar 

  96. Black J. Metal on metal bearings. Clin Orth Rel Res 1996;329S:S244–55.

    Article  Google Scholar 

  97. Chan FW, Bobyn JD, Medley JB, Krygier JJ, Yue S, Tanzer M. Engineering issues and wear performance of metal on metal hip implants. Clin Orth Rel Res 1996;333:96–107.

    Article  Google Scholar 

  98. Schmalzried TP, Peters PC, Maurer BT, Bragdon CR, Harris WH. Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces. J Arthroplasty 1996;11:322–31.

    Article  PubMed  CAS  Google Scholar 

  99. Ito H, Kaneda K, Yuhta T, Nishimura I, Yasuda K, Matsuno T. Reduction of polyethylene wear by concave dimples on the frictionless surface in artificial hip joints. J Arthroplasty 2000;15:332–8.

    Article  PubMed  CAS  Google Scholar 

  100. Christel P, et al. Development of a carbon-carbon hip prosthesis. J.Biomed Mater Res 1987;21:191–218.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Sorbie, C., Zdero, R., Bryant, J.T. (2004). Normal and Prosthesic Hip Biomechanics. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_47

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics