Skip to main content

Facultative and Obligatory Diapause Responses in Three Species of Burnet Moth: A Characterization of Life-Cycle Phenologies by Field Observations and Laboratory Experiments

  • Conference paper
Insect Life Cycles

Abstract

In temperate climates, phases of growth and dormancy of insect species must cope with the annually fluctuating weather conditions. Instead of quiescence, a prospective and hormonally controlled diapause prevents insect development outside of the season, even when environmental conditions are still advantageous. The induction, maintenance and termination of diapause as well as the resulting adaptive significance of various life-cycle strategies have been studied in detailed ecophysiological analyses (for recent reviews, see Danks 1987; Tauber et al. 1986; Zaslavski 1988). Many lepidopterous species respond to environmental factors during their larval instars, sometimes far in advance of the beginning of their diapause. Other species seem to develop independently of external cues (Friedrich 1983). Both extrinsic and intrinsic factors can regulate the life-cycles of these animals regardless of whether they are polycyclic species, with at least two generations within 1 year, or monocyclic species, with a single reproduction period every year (see e.g. Tauber and Tauber 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alberti B (1958) Des problèmes dans le groupe de Zygaena transalpina. Bull Soc Entomol Mulhouse, pp 1–8

    Google Scholar 

  • Alberti B (1959) Sur l’éxtension du groupe de Zygaena transalpina en France. Bull Soc Entomol Mulhouse, pp 35–36

    Google Scholar 

  • Barnes HF (1952) Studies in fluctuations in insect populations. XII. Further evidence for prolonged larval life in the wheat blossom midges. Ann Appl Biol 39: 370–373

    Article  Google Scholar 

  • Beck SD (1980) Insect photoperiodism. Academic Press, New York

    Google Scholar 

  • Burgeff H (1910) Beiträge zur Biologie der Gattung Zygaena. II. Z Wiss Insekt Biol 6: 39–44, 97–98

    Google Scholar 

  • Burgeff H (1921) Beiträge zur Biologie der Gattung Zygaena. TV. Mitt Munch Entomol Ges 11:50–64

    Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada Monograph Series no 1. Biological Survey of Canada, Ottawa

    Google Scholar 

  • Dutreix C (1985) Les collections entomologiques du museum d’histoire naturelle Nantes. Révision du genre Zygaena. Bull Soc Sci Nat Ouest de la France N.S. 7: 117–125

    Google Scholar 

  • Falkovich MI (1979) Seasonal development of desert Lepidoptera of Soviet Central Asia and a historical analysis of the Lepidoptera fauna. Entomol Rev 58: 20–45

    Google Scholar 

  • Friedrich E (1983) Handbuch der Schmetterlingszucht. Franckh (Keller & Co.), Stuttgart

    Google Scholar 

  • Harvey GT (1967) On coniferophagus species of Choristoneura (Lep., Tortricidae) in North America. V. Second diapause as a species character. Can Entomol 99: 486–503

    Article  Google Scholar 

  • Hofmann A, Reiss G (1982) Beitrag zur Zygaenenfauna Nordafrikas. II. Atalanta 13: 136–153

    Google Scholar 

  • Kaestner A (1973) Lehrbuch der Speziellen Zoologie 5, Insecta B (Spezieller Teil). Fischer, Jena, pp 534–574

    Google Scholar 

  • Lounibos LP, Bradshaw WE (1975) A second diapause in Wyeomyia smithii: seasonal incidence and maintenance by photoperiod. Can J Zool 53: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Maixner B, Wipking W (1985) Zygaenidae Fabr. Mitt Arbeitsgem rhein-westf. Lepidopterol 4:103–211

    Google Scholar 

  • Matthes E (1953) Diapause, Bivoltinismus und zweimalige Ãœberwinterung bei Fumea crassiorella (Lep., Psychidae). Mem Est Mus Zool Univ Coimbra 220: 1–16

    Google Scholar 

  • Naumann CM, Feist R, Richter G, Weber U (1984) Verbreitungsatlas der Gattung Zygaena Fabricius 1775. Theses Zool 5. Cramer Verlag, Braunschweig

    Google Scholar 

  • Pörschmann M (1986) Morphologische und habituelle Parameter im larvalen Entwicklungszyklus von Zygaena trifolii (Esper 1783). Diplom-Thesis, Universität Bielefeld Schweizerischer Bund für Naturschutz (1987) Tagfalter und ihre Lebensräume. Fotorotar Verlag, Egg ZH

    Google Scholar 

  • Sorauer P (1956) Handbuch der Pflanzenkrankheiten, vol 5. Parey, Berlin

    Google Scholar 

  • Sotavalta O, Karvonen EI, Karvonen EE, Korpela S, Korpela J, (1980) The early stages and biology of Acerbia alpina (Lep., Arctiidae). Not Entomol 60: 89–95

    Google Scholar 

  • Tauber MJ, Tauber CA (1973) Insect phenology: criteria for analyzing dormancy and the forecasting postdiapause development and reproduction in the field. Search Agric Cornell Univ. Agric Exp Stat Ithaca NY 3: 1–16

    Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  • Walter H, Lieth H (1960) Klimadiagramm-Weltatlas. Fischer, Jena

    Google Scholar 

  • Wipking W (1985) Ökologische Untersuchungen über die Habitatbindung der Zygaenidae. Mitt Münch Entomol Ges 74: 37–59

    Google Scholar 

  • Wipking W (1987) Ökologische Untersuchungen über die Diapauseregulation bei westpaläarktischen Stämmen einer Schmetterlingsfamilie (Ins., Lepidoptera, Zygaenidae). PhD thesis, Universität zu Köln

    Google Scholar 

  • Wipking W (1988a) Repeated larval diapause and diapause-free development in geographic strains of the burnet moth Zygaena trifolii Esp. I. Discontinuous clinal variation in photoperiodically controlled diapause induction. Oecologia 77: 557–564

    Article  Google Scholar 

  • Wipking W (1988b) Bivoltinismus und repetitive Larvaldiapause bei Zygaena trifolii Esp. Verh Dtsch Zool Ges 81: 334–335

    Google Scholar 

  • Wipking W, Neumann D (1986) Polymorphism in the larval hibernation strategy of the burnet moth Zygaena trifolii. In: Taylor F, Karban R (eds) The evolution of insect life cycles. Springer, Berlin Heidelberg New York, pp 125–134

    Chapter  Google Scholar 

  • Zaslavski VA (1988) Insect development. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this paper

Cite this paper

Wipking, W. (1990). Facultative and Obligatory Diapause Responses in Three Species of Burnet Moth: A Characterization of Life-Cycle Phenologies by Field Observations and Laboratory Experiments. In: Gilbert, F. (eds) Insect Life Cycles. Springer, London. https://doi.org/10.1007/978-1-4471-3464-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3464-0_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3466-4

  • Online ISBN: 978-1-4471-3464-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics