Skip to main content

Robots for Measurement/Clinical Assessment

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Neurological disorders such as stroke, traumatic brain injury, cerebral palsy, or spinal cord injury result in partial or complete sensorimotor impairments in the affected limbs. To provide an optimal rehabilitation, a detailed assessment of the nature and degree of the sensorimotor deficits is crucial. Valid, reliable, and standardized assessments are essential to define the therapy setting. Many clinical assessments suffer from limitations such as poor validity, low reliability, and low sensitivity. However, as often no alternative exists, they are widely used in clinical settings. Rehabilitation robotics is a promising technology that can provide objective measurements, which could help overcome the common drawbacks of clinical assessments. This chapter focuses on the new possibilities robotic devices offer in the field of neurorehabilitation. Different strategies to evaluate sensorimotor impairments using robotic platforms are presented. We discuss how a link between conventional scales and robotic assessments could be established, and how this could result in more objective, clinically accepted assessment scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan PW et al. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23(8):1084–9.

    Article  PubMed  CAS  Google Scholar 

  2. Prabhakaran S et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.

    PubMed  Google Scholar 

  3. Zorner B et al. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotrauma. 2010;27(1):241–52.

    Article  PubMed  Google Scholar 

  4. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.

    PubMed  Google Scholar 

  5. Mehrholz J et al. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;4:CD006876.

    PubMed  Google Scholar 

  6. Prange GB et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–84.

    Article  PubMed  Google Scholar 

  7. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525.

    Article  PubMed  CAS  Google Scholar 

  8. Gassert R, Burdet E, Chinzei K. Opportunities and challenges in MR-compatible robotics: reviewing the history, mechatronic components, and future directions of this technology. IEEE Eng Med Biol Mag. 2008;27(3):15–22.

    Article  PubMed  Google Scholar 

  9. World Health Organization. International classification of functioning, disability and health: ICF. Geneva: WHO Library Cataloguing-in-Publication Data; 2001.

    Google Scholar 

  10. Cruz EG, Waldinger HC, Kamper DG. Kinetic and kinematic workspaces of the index finger following stroke. Brain. 2005;128(Pt 5):1112–21.

    Article  PubMed  CAS  Google Scholar 

  11. Dovat L, et al. A cable driven robotic system to train finger function after stroke. In: Proceedings of the IEEE international conference on robotic rehabilitation (ICORR). Noordwijk; 2007. p. 222–7.

    Google Scholar 

  12. Kamper DG et al. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil. 2006;87(9):1262–9.

    Article  PubMed  Google Scholar 

  13. Lang CE, Schieber MH. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol. 2004;92(5):2802–10.

    Article  PubMed  Google Scholar 

  14. Raghavan P et al. Patterns of impairment in digit independence after subcortical stroke. J Neurophysiol. 2006;95(1):369–78.

    Article  PubMed  Google Scholar 

  15. Schieber MH et al. Selective activation of human finger muscles after stroke or amputation. Adv Exp Med Biol. 2009;629:559–75.

    Article  PubMed  Google Scholar 

  16. Finch E et al. Physical rehabilitation outcome measures: a guide to enhanced clinical decision making. 2nd ed. Toronto: Canadian Physiotherapy Association; 2002.

    Google Scholar 

  17. Kirshner B, Guyatt G. A methodological framework for assessing health indices. J Chronic Dis. 1985;38(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  18. Flansbjer UB et al. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37(2):75–82.

    Article  PubMed  Google Scholar 

  19. van Hedel HJ, Wirz M, Dietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil. 2005;86(2):190–6.

    Article  PubMed  Google Scholar 

  20. Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  21. Enright PL. The six-minute walk test. Respir Care. 2003;48(8):783–5.

    PubMed  Google Scholar 

  22. Parker VM, Wade DT, Langton R. Hewer, loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med. 1986;8(2):69–73.

    PubMed  CAS  Google Scholar 

  23. Yozbatiran N et al. Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. J Neurol Sci. 2006;246(1–2):117–22.

    Article  PubMed  Google Scholar 

  24. Mathiowetz V et al. Adult norms for the Nine Hole Peg Test of finger dexterity. Occup Ther J Res. 1985;5:24–38.

    Google Scholar 

  25. Itzkovich M et al. Rasch analysis of the Catz-Itzkovich spinal cord independence measure. Spinal Cord. 2002;40(8):396–407.

    Article  PubMed  CAS  Google Scholar 

  26. Catz A et al. SCIM – spinal cord independence measure (version II): sensitivity to functional changes. Harefuah. 2002;141(12):1025–31, 1091.

    PubMed  Google Scholar 

  27. Bluvshtein V et al. SCIM III is reliable and valid in a separate analysis for traumatic spinal cord lesions. Spinal Cord. 2010;49(2):292–6.

    Article  PubMed  Google Scholar 

  28. Catz A et al. SCIM – spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35(12):850–6.

    Article  PubMed  CAS  Google Scholar 

  29. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.

    Article  PubMed  Google Scholar 

  30. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.

    PubMed  CAS  Google Scholar 

  31. Pandyan AD et al. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil. 1999;13(5):373–83.

    Article  PubMed  CAS  Google Scholar 

  32. Blackburn M, van Vliet P, Mockett SP. Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Phys Ther. 2002;82(1):25–34.

    PubMed  Google Scholar 

  33. Colombo G et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    PubMed  CAS  Google Scholar 

  34. Veneman JF et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  35. Hogan N, et al. Interactive robotic therapist. US Patent 5466213, 1995.

    Google Scholar 

  36. Lum PS et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  37. Nef T, et al. ARMin – exoskeleton for arm therapy in stroke patients. In: 2007 IEEE 10th international conference on rehabilitation robotics, Vols 1 and 2. Noordwijk; 2007. p. 68–74.

    Google Scholar 

  38. Bouzit M et al. The Rutgers Master II: new design force-feedback glove. IEEE/ASME Trans Mechatronic. 2002;7(2):256–63.

    Article  Google Scholar 

  39. Hesse S et al. Computerized arm training improves the motor control of the severely affected arm after stroke – a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi CD et al. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.

    Article  PubMed  Google Scholar 

  41. Lambercy O et al. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    Article  PubMed  Google Scholar 

  42. Dovat L et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabil Eng. 2008;16(6):582–91.

    Article  PubMed  Google Scholar 

  43. Marchal-Crespo L, Reinkensmeyer DL. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20.

    Article  PubMed  Google Scholar 

  44. Dovat L, et al. Post-stroke training of a pick and place activity in a virtual environment. In: Virtual rehabilitation. Vancouver; 2008. p. 28–34.

    Google Scholar 

  45. Feys P, et al. Arm training in multiple sclerosis using phantom: clinical relevance o robotic outcome measures. In: IEEE 11th international conference on rehabilitation robotics, Vols 1 and 2. Kyoto; 2009. p. 671–6.

    Google Scholar 

  46. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30.

    Article  PubMed  Google Scholar 

  47. Cai LL et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26(41):10564–8.

    Article  PubMed  CAS  Google Scholar 

  48. Reinkensmeyer DJ et al. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006;43(5):657–70.

    Article  PubMed  Google Scholar 

  49. Reinkensmeyer D et al. Robotic gait training: toward more natural movements and optimal training algorithms. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4818–21.

    PubMed  CAS  Google Scholar 

  50. Ellis MD, Sukal-Moulton T, Dewald JP. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23(8):862–9.

    Article  PubMed  Google Scholar 

  51. Lünenburger L, et al. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. In: International conference on rehabilitation robotics (ICORR). Chicago; 2005.

    Google Scholar 

  52. Bolliger M et al. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.

    Article  PubMed  Google Scholar 

  53. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology. 1980;30(12):1303–13.

    Article  PubMed  CAS  Google Scholar 

  54. Pandyan AD et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1–2):2–6.

    Article  PubMed  CAS  Google Scholar 

  55. Malhotra S et al. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23(7):651–8.

    Article  PubMed  CAS  Google Scholar 

  56. Wood DE et al. Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disabil Rehabil. 2005;27(1–2):19–32.

    Article  PubMed  CAS  Google Scholar 

  57. Kakebeeke TH et al. The importance of posture on the isokinetic assessment of spasticity. Spinal Cord. 2002;40(5):236–43.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson GR. Outcome measures of spasticity. Eur J Neurol. 2002;9 Suppl 1:10–6; discussion 53–61.

    Article  PubMed  Google Scholar 

  59. Mirbagheri MM et al. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141(4):446–59.

    Article  PubMed  CAS  Google Scholar 

  60. Mirbagheri MM, Barbeau H, Kearney RE. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res. 2000;135(4):423–36.

    Article  PubMed  CAS  Google Scholar 

  61. Lünenburger L, et al. Assessment of spasticity with the robotic gait orthosis Lokomat. In: 6th world brain injury congress. Melbourne; 2005.

    Google Scholar 

  62. Schmartz AC et al. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6:29–37.

    Article  PubMed  Google Scholar 

  63. van Asseldonk EH et al. The effects on kinematics and muscle activity of walking in a Robotic Gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):360–70.

    Article  PubMed  Google Scholar 

  64. Banz R et al. Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther. 2008;88(10):1135–45.

    Article  PubMed  Google Scholar 

  65. Lünenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    Article  PubMed  Google Scholar 

  66. Lünenburger L et al. Biofeedback in gait training with the robotic orthosis lokomat. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4888–91.

    PubMed  Google Scholar 

  67. Flash T, Hogan N. The coordination of arm movements – an experimentally confirmed mathematical-model. J Neurosci. 1985;5(7):1688–703.

    PubMed  CAS  Google Scholar 

  68. Rohrer B et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.

    PubMed  CAS  Google Scholar 

  69. Burdet E, Milner TE. Quantization of human motions and learning of accurate movements. Biol Cybern. 1998;78(4):307–18.

    Article  PubMed  CAS  Google Scholar 

  70. Kahn LE, et al. Effect of robot-assisted and unassisted exercise on functional reaching in chronic hemiparesis. In: Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society, Vols 1–4. Istanbul; 2001, 23, p. 1344–7.

    Google Scholar 

  71. Rohrer BR et al. Movement smoothness measures stroke recovery. Neurology. 2002;58(7):A191–2.

    Google Scholar 

  72. Kahn LE et al. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.

    Article  PubMed  Google Scholar 

  73. Lambercy O et al. Robot-assisted rehabilitation of hand function after stroke with the hapticKnob and the handCARE. In: Tong RKY, editor. Biomechatronics in medicine and health care. Singapore: Pan Stanford Publishing; 2011.

    Google Scholar 

  74. Rohrer B et al. Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control. 2004;8(4):472–83.

    PubMed  Google Scholar 

  75. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119:281–93.

    Article  PubMed  Google Scholar 

  76. Guidali M, et al. Assessment and training of synergies with an arm rehabilitation robot. In: Proceedings of international conference on rehabilitation robotics (ICORR). Kyoto; 2009. p. 772–6.

    Google Scholar 

  77. Dewald JPA, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.

    Article  PubMed  CAS  Google Scholar 

  78. Miller LC et al. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE Trans Biomed Eng. 2009;56(9):2312–7.

    Article  PubMed  Google Scholar 

  79. Bardorfer A et al. Upper limb motion analysis using haptic interface. IEEE-ASME Trans Mechatronic. 2001;6(3):253–60.

    Article  Google Scholar 

  80. Emery C, et al. Haptic/VR assessment tool for fine motor control. Haptics: generating and perceiving tangible sensations, Pt Ii. Proceedings. Lecture Notes in Computer Science, Vol. 6192. Springer, Berlin/Heidelberg. 2010. p. 186–193.

    Google Scholar 

  81. Colombo R et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–24.

    Article  PubMed  Google Scholar 

  82. Celik O et al. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):433–44.

    Article  PubMed  Google Scholar 

  83. Bosecker C et al. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–9.

    Article  PubMed  Google Scholar 

  84. Lambercy O, et al. Robotic assessment of hand function with the HapticKnob. In: Proceedings of 4th Inter­national Convention for Rehabilitation ­engineering and Assistive Technology ISBN 978-981-08-6199-5, Article No: 33, Publishers: Singapore Therapeutic, Assistive and Rehabilitation Technolo­gies (START) Center, Singapore 2010 http://dl.acm.org/citation.cfm?id=1926091.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bolliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lambercy, O., Lünenburger, L., Gassert, R., Bolliger, M. (2012). Robots for Measurement/Clinical Assessment. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics