Skip to main content

Ischemic Cerebral Edema

  • Chapter
Brain Ischemia

Abstract

Cerebral edema is defined as a relative increase in the water content of the brain, and this excess water may be in either the intracellular or the extracellular compartments, or both. There are two other causes of brain swelling, vascular congestion and hydrocephalus; these are not due to edema, but may be both associated and confused with it. The early literature distinguished between brain swelling or dry edema (Hirnschwelling), which corresponds to intracellular edema, and brain or wet edema (Hirondem), which corresponds to extracellular edema. The differentiation between these two forms depended on the appearance of the cut surface of the brain (Reichardt 1904/5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Kogure K, Watanabe T (1988) Prevention of ischaemic and post-ischaemic brain oedema by a novel calcium antagonist. J Cerebr Blood Flow Metab 8: 436–439

    Article  CAS  Google Scholar 

  • Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischaemia. Stroke 8: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Branston NM, Bell BA, Hunstock A, Symon L (1980) Time and flow factors in the function of postischaemic oedema in the primate cortex. Adv Neurol 28: 291–298

    PubMed  CAS  Google Scholar 

  • Chan PH, Schmidley JW, Fishman RA, Longar SM (1984) Brain injury, edema and vascular permeability induced by oxygen derived free radicals. Neurology 34: 315–320

    PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA, Wesley MA, Longar SM (1990) Pathogenesis of vasogenic oedema in focal cerebral ischaemia, the role of superoxide radicals. Adv Neurol 52: 177–183

    PubMed  CAS  Google Scholar 

  • Dutka AJ, Cochanek PM, Hallenbeck JM (1989) The influence of granulocytopenia on canine cerebral ischaemia induced by air embolism. Stroke 20: 390–395

    Article  PubMed  CAS  Google Scholar 

  • Garcia JH, Kamijyo Y (1974) Cerebral infarction: evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33: 408–421

    Article  PubMed  CAS  Google Scholar 

  • Hatashita T, Ito M, Miyaoka M, Ishii S (1990) Chronological alterations of regional cerebral blood flow, glucose utilization and edema formation after focal ischemia in hypertensive and normotensive rats. Adv Neurol 52: 29–37

    PubMed  CAS  Google Scholar 

  • Heiss WD, Rosner G (1983) Functional recovery of cortical neurones as related to degree and duration of ischaemia. Ann Neurol 14: 294–301

    Article  PubMed  CAS  Google Scholar 

  • Hossman KA (1976) Development and resolution of ischemic brain swelling. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer-Verlag, New York, pp 219–227

    Chapter  Google Scholar 

  • Hossman KA (1989) The pathophysiology of experimental brain edema. Neurosurg Rev 12: 263–280

    Article  Google Scholar 

  • Hossman KA, Bloink M (1981) Blood flow and regulation of blood flow in experimental peritumoral edema. Stroke 12: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Hossman KA, Olesen Y (1970) Suppression and recovery of humoral function in transient cerebral ischaemia. Brain Res 22: 313–325

    Article  Google Scholar 

  • Ikeda Y, Long DM (1990) Comparative effects of direct and indirect hydroxyl radical scavengers on traumatic brain oedema. Acta Neurochir Suppl. 51: 74–76

    CAS  Google Scholar 

  • Imaizumi S, Woolworth V, Kinouchi H, Chen SF, Fishman RA, Chan PH (1990) Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischaemia. Acta Neurochir Suppl. 51: 236–238

    CAS  Google Scholar 

  • Johansson BB (1976) Water content of rat brain in acute arterial hypertension. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer-Verlag, New York, pp 28–31

    Chapter  Google Scholar 

  • Kane PJ, Modha P, Strachan RD, Mendelow AD, Cook S, Chambers IR (1990) The effect of immunosuppression with whole body and regional irradiation on the development of cerebral oedema in a rat model of intracerebral haemorrhage. Acta Neurochir Suppl. 51: 52–54

    CAS  Google Scholar 

  • Katayama Y, Shimizu J, Suzuki S, Memezawa H, Kashiwagi F, Kamiya T et al. (1990) The role of arachidonic acid metabolism on ischemic brain edema and metabolism. Adv Neurol 52: 105–108

    PubMed  CAS  Google Scholar 

  • Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Klatzo I (1972) Pathophysiological aspects of brain edema. In: Reulen HJ, Schurmann K (eds) Steroids in brain edema. Springer-Verlag, Heidelberg, pp 1–8

    Chapter  Google Scholar 

  • Klatzo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brian oedema. In: Cervos-Navarro J, Ferszt R (eds) Advances in neurology 28: Brain edema. Raven Press, New York, pp 359–373

    Google Scholar 

  • Kuroiwa T, Yokfujita J, Kaneko H, Okeda R (1990) Accumulation of oedema fluid in deep white matter after cerebral cold injury. Acta Neurochir Suppl. 51: 84–86

    CAS  Google Scholar 

  • Little JR (1976) Microvascular alterations and edema in focal cerebral ischemia. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer-Verlag, New York, pp 236–243

    Chapter  Google Scholar 

  • Marshall LF, Bruce DA, Graham DI, Langfitt JW (1976) Alterations in behaviour, brain electrical activity, cerebral blood flow and intracranial pressure produced by triethyl tin sulphate induced cerebral edema. Stroke 7: 21–25

    Article  PubMed  CAS  Google Scholar 

  • Meinig G, Reulen HJ, Hadjidimos A, Siemon C, Bartko D, Schurmann K (1972) Induction of filtration oedema by extreme reduction of cerebrovascular resistance associated with hypertension. Eur Neurol 8: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Mies G, Ishimaru S, Xie Y, Seo K, Hossman KA (1991) Ischaemic thresholds of cerebral protein synthesis and energy states following middle cerebral artery occlusion in rat. J Cerebr Blood Flow Metab 11: 753–761

    Article  CAS  Google Scholar 

  • Nag S, Robertson DM, Dinsdale HB (1977) Cerebral cortical changes in acute experimental hypertension. Lab Invest 36: 150–161

    PubMed  CAS  Google Scholar 

  • Naruse H, Tanaka K, Nishimura S, Fugimoto K (1990) A microstructural study of oedema resolution. Acta Neurochir Suppl. 51: 87–89

    CAS  Google Scholar 

  • O’Brien MD, Jordan MM, Waltz AG (1974a) Ischemic cerebral Brain Ischemia: Basic Concepts and Clinical Relevance edema and the blood brain barrier. Arch Neurol 30: 461–465

    PubMed  Google Scholar 

  • O’Brien MD, Waltz AG, Jordan MM (1974b) Ischemic cerebral edema. Arch Neurol 30: 456–460

    PubMed  Google Scholar 

  • O’Brien MD, Halsey JH, Strong ER (1983) The effect of hypertension on ischaemic cerebral oedema in spontaneously hypertensive rats. Neurol Res 5: 83–93

    PubMed  Google Scholar 

  • Oh SM, Betz AL (1991) Interaction between free radicals and excitatory amino acids in the formation of ischaemic brain oedema in rats. Stroke 22: 915–921

    Article  PubMed  CAS  Google Scholar 

  • Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38: 222–234

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Schafer JA, Plum F (1976) The blood brain barrier in experimental seizures. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer-Verlag, New York, pp 38–42

    Chapter  Google Scholar 

  • Rapoport SI (1976a) In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer-Verlag, New York, p 382 (discussion)

    Google Scholar 

  • Rapoport SI (1976b) Blood brain barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Rapoport SI, Hori M, Klatzo I (1971) Reversible osmotic opening of the blood brain barrier. Science 173: 1026–1028

    Article  PubMed  CAS  Google Scholar 

  • Reichardt M (1904/5) Zur Entsenhung des Hirndrucks. Dtsch Zeitschr Nervenheilk 28:306

    Google Scholar 

  • Reulen HK (1976) Vasogenic brain oedema. Br J Anaes 48: 721–752

    Article  Google Scholar 

  • Saito N, Chang C, Kawai K, Joo F, Nowak TS, Mies G et al. (1990) The role of neuroexcitation on development of blood brain barrier and oedematous changes following cerebral ischaemia and traumatic brain injury. Acta Neurochir Suppl. 51: 186–188

    CAS  Google Scholar 

  • Schurer L, Prugner U, Kempski O, Arfors K-E, Baethmann A (1990) Effects of antineutrophil serum on post-traumatic brain oedema in rats. Acta Neurochir Suppl. 51: 49–51

    CAS  Google Scholar 

  • Shinohara Y, Yamamoto M, Haida M, Yazaki K, Kurita D (1990) Effect of glutamate and its antagonist on shift of water from extra to intracellular space after cerebral ischaemia. Acta Neurochir Suppl. 51: 198–200

    CAS  Google Scholar 

  • Siesjo BK, Bendek G, Koide T, Westerberg E, Wieloch T (1985) Influence of acidosis on lipid peroxidation in brain tissue in vitro. J Cerebr Blood Flow Metab 5: 253–258

    Article  CAS  Google Scholar 

  • Staub F, Baethmann A, Peters J, Kempski O (1990) Effects of lactacidosis on volume and viability of glial cells. Acta Neurochir Suppl. 51: 3–6

    CAS  Google Scholar 

  • Sutton LN, Bruce DA, Welsh FA, Jaggi JL (1980) Metabolic and electrophysiologic consequences of vasogenic edema. Adv Neurol 28: 241–254

    PubMed  CAS  Google Scholar 

  • Symon L (1967) A comparative study of middle cerebral artery pressure in dogs and macaques. J Physiol 191: 449–465

    PubMed  CAS  Google Scholar 

  • Symon L, Pasztor E, Branston NM (1974) The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion. An experimental study by the technique of hydrogen clearance in baboons. Stroke 5: 355–364

    Article  PubMed  CAS  Google Scholar 

  • Symon L, Branston NM, Strong AJ (1976) Autoregulation in acute focal ischemia. Stroke 7: 547–554

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanimura K, Veki K (1977) Ultrastructural and biochemical studies on ouabain induced oedematous brain. Acta Neuropathol (Berlin) 37: 95–100

    CAS  Google Scholar 

  • Yamamoto M, Haida M, Taniguchi R, Yazaki K, Kurita D, Fukuzaki M et al. (1990) Suppression of water shift into intracellular space by TA3090 measured with NMR. Acta Neurochir Suppl. 51: 204–206

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

O’Brien, M.D. (1995). Ischemic Cerebral Edema. In: Caplan, L.R. (eds) Brain Ischemia. Springer, London. https://doi.org/10.1007/978-1-4471-2073-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2073-5_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2075-9

  • Online ISBN: 978-1-4471-2073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics