Skip to main content

Metabolism and Utilisation of Short Chain Fatty Acids Produced by Colonic Fermentation

  • Chapter
Dietary Fibre — A Component of Food

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Most of the carbohydrates of the fibre fraction are extensively broken down by the microflora when they reach the large intestine; this metabolic process results in the production of gas and short chain fatty acids (SCFA; essentially acetic, propionic and butyric acids). In non-ruminant mammals, including humans, the large intestine is the major site of SCFA production and they are extensively absorbed. The mechanisms for SCFA absorption depend on conditions prevailing in the intestinal lumen; basically, the SCFA always diffuse along the concentration gradient, mainly the non-ionised (protonated) form. However, SCFA absorption may involve facilitated transfers: when the lumen pH is close to neutral, SCFA absorption is parallel to a net secretion of bicarbonate (Hoverstad, 1986). This process contributes to water and mineral recovery from the large intestine. Absorption capacity from the human colon has been estimated at 200 to 700 mmol/24 hours (Cummings, 1984), which is in accordance with an estimated breakdown of 30 to 60 g carbohydrates in the colon. There is also a minor production of some other SCFA (isobutyrate, n-valerate, isovalerate), the iso C4 and C5 monocarboxylates chiefly arise from the de-amination of branched chain amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson EA, Arky RA (1968) Acute antilipolytic effects of ethyl alcohol and acetate in man. J Lab Clin Med 72:105–118

    PubMed  CAS  Google Scholar 

  • Akanji AO, Hockaday TD (1990) Acetate tolerance and the kinetics of acetate utilization in diabetic and nondiabetic subjects. Am J Clin Nutr 51:112–118

    PubMed  CAS  Google Scholar 

  • Akanji AO, Bruce MA, Frayn KN (1989) Effect of acetate infusion on energy expenditure and substrate oxidation rates in non-diabetic and diabetic subjects. Eur J Clin Nutr 43:107–115

    PubMed  CAS  Google Scholar 

  • Anderson JW, Bridges SR (1984) Short chain fatty acid fermentation products of plant fiber affect glucose metabolism of isolated rat hepatocytes. Proc Soc Expt Biol Med 177:372–376

    CAS  Google Scholar 

  • Ardawi MSM, Newsholme EA (1985) Fuel utilization on colonocytes of the rat. Biochem J 231:713–719

    PubMed  CAS  Google Scholar 

  • Arinze IJ, Waters D, Donaldson MK (1979) Effect of methylmalonic acid on gluconeogenesis in isolated rat and guinea-pig hepatocytes. Biochem J 184:717–719

    PubMed  CAS  Google Scholar 

  • Bahn RS, Zeller JC, Smith TJ (1988) Butyrate increases c-erb A oncogene expression in human colon fibroblasts. Biochem Biophys Res Comm 150:259–262

    Article  PubMed  CAS  Google Scholar 

  • Baranyai JM, Blum JJ (1989) Quantitative analysis of intermediary metabolism in rat hepatocytes incubated in the presence and absence of ethanol with a substrate mixture including ketoleucine. Biochem J 258:121–140

    PubMed  CAS  Google Scholar 

  • Barritt GJ, Zander GL, Utter MF (1976) The regulation of pyruvate carboxylase activity in glucogenic tissues. In: Hanson RW, Mehiman MA (eds) Gluconeogenesis: its regulation in mammalian species. Wiley, New York, pp 3–46

    Google Scholar 

  • Bergman EN (1990) Energy contribution of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    PubMed  CAS  Google Scholar 

  • Berry RD, Paraskeva C (1988) Expression of carcinoembryonic antigen by adenoma and carcinoma derived epithelial cell lines: possible marker of tumour progression and modulation of expression by sodium butyrate. Carcinogenesis 9:447–450

    Article  PubMed  CAS  Google Scholar 

  • Blair JB, Cook DE, Lardy HA (1973) Interaction of propionate and lactate in the perfused rat liver. J Biol Chem 248:3608–3614

    PubMed  CAS  Google Scholar 

  • Blaxter KL (1971) Methods of measuring the energy metabolism of animals and the interpretation of the results obtained. Fed Proc 30:1436–1443

    PubMed  CAS  Google Scholar 

  • Brindle NPJ, Zammit VA, Pogson CI (1985) Inhibition of sheep liver carnitine palmitoyltransferase by methylmalonyl-CoA. Biochem Soc Trans 33:880–881

    Google Scholar 

  • Buckley BM, Williamson DH (1977) Origin of blood acetate in the rat. Biochem J 166:539–545

    PubMed  CAS  Google Scholar 

  • Bugaut M (1987) Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol 86B:439–472

    CAS  Google Scholar 

  • Chen W-JL, Anderson JW, Jennings D (1984) Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc Soc Exp Biol Med 175:215–218

    PubMed  CAS  Google Scholar 

  • Corkey BE, Martin-Requero A, Walajtys-Rode E, Williams RJ, Williamson JR (1982) Regulation of the branched chain α-ketoacid pathway in liver. J Biol Chem 257:9668–9676

    PubMed  CAS  Google Scholar 

  • Coudé FX, Sweetman L, Nyhan WL (1979) Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. J Clin Invest 64:1544–1551

    Article  PubMed  Google Scholar 

  • Crabtree B, Gordon M-J, Christie SL (1990) Measurement of the rates of acetyl-CoA hydrolysis and synthesis from acetate in rat hepatocytes and the role of these fluxes in substrate cycling. Biochem J 270:219–225

    PubMed  CAS  Google Scholar 

  • Crouse JR, Gerson CD, DeCarli LM, Lieber CS (1968) Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 9:509–512

    PubMed  CAS  Google Scholar 

  • Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    Article  PubMed  CAS  Google Scholar 

  • Cummings JH (1984) Colonic absorption: the importance of short chain fatty acids in man. Scand J Gastroenterol 20:88–99

    Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CPE, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Davidson AM, Halestrap AP (1988) Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187. Biochem J 254:379–384

    PubMed  CAS  Google Scholar 

  • Del Boca J, Flatt JP (1969) Fatty acid synthesis from glucose and acetate and the control of lipogenesis in adipose tissue. Eur J Biochem 11:127–134

    Article  PubMed  Google Scholar 

  • Demigné C, Rémésy C (1982) Influence of unrefined potato starch on cecal fermentations and volatile fatty acid absorption in rats. J Nutr 112:2227–2234

    PubMed  Google Scholar 

  • Demigné C, Yacoub C, Rémésy C (1986a) Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism. J Nutr 116:77–86

    PubMed  Google Scholar 

  • Demigné C, Yacoub C, Rémésy C, Fafournoux P (1986b) Propionate and butyrate metabolism in rats or sheep hepatocytes. Biochim Biophys Acta 875:535–545

    PubMed  Google Scholar 

  • Demigné C, Yacoub C, Morand C, Rémésy C (1991) Interactions between propionate and aminoacid metabolism in sheep hepatocytes. Br J Nutr 65:301–317

    Article  PubMed  Google Scholar 

  • Desch G, Polito C, Descomps B et al. (1982) Effect of acetate on ketogenesis during haemodialysis. J Lab Clin Med 99:98–106

    PubMed  CAS  Google Scholar 

  • Des Rosiers C, David F, Garneau M, Brunengraber H (1991) Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. J Biol Chem 266:1574–1578

    PubMed  Google Scholar 

  • Fafournoux P, Rémésy C, Demigné C (1985) Propionate transport in rat liver cells. Biochim Biophys Acta 818:73–80

    Article  PubMed  CAS  Google Scholar 

  • Fleming SE, Fitch MD, De Vries S, Knight C (1991) Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121:869–878

    PubMed  CAS  Google Scholar 

  • Groot PHE, Scholte HR, Hülsmann WC (1974) Fatty acid activation: specificity, localization, and function. In: Paoletti R, Kritchevsky D (eds) Advances in lipid research. Academic Press, New York, pp 75–126

    Google Scholar 

  • Henning SJ, Hird FJR (1972) Ketogenesis from butyrate and acetate by the caecum and the colon of rabbits. Biochem J 130:785–790

    PubMed  CAS  Google Scholar 

  • Herold KM, Rothenberg PG (1988) Evidence for a labile intermediate in the butyrate reduction of the level of c-myc RNA in SW837 rectal carcinoma cells. Oncogene 3:423–428

    PubMed  CAS  Google Scholar 

  • Hoverstad T (1986) Studies of short chain fatty acid absorption in man. Scand J Gastroenterol 21:257–260

    Article  PubMed  CAS  Google Scholar 

  • Illman RJ, Topping DL, Mcintosh GH et al. (1988) Hypocholesterolaemic effects of dietary propionate: studies in whole animals and perfused rat liver. Ann Nutr Metab 32:97–107

    Article  CAS  Google Scholar 

  • Inoue T, Yamada T, Furuya E, Tagawa K (1989) Ca2+-induced accumulation of pyrophosphate in mitochondria during acetate metabolism. Biochem J 262:965–970

    PubMed  CAS  Google Scholar 

  • Jessop NS, Smith GH, Crabtree B (1986) Measurement of substrate cycle between acetate and acetyl-CoA in rat hepatocytes. Biochem Soc Trans 14:146–147

    CAS  Google Scholar 

  • Karlsson N (1976) Acetate metabolism in skeletal muscle. Thesis, in: Acta Universitatis Upsaliensis, Uppsala

    Google Scholar 

  • Knowles SE, Jarrett IG, Filsell OH, Ballard FJ (1974) Production and utilization of acetate in mammals. Biochem J 142:401–411

    PubMed  CAS  Google Scholar 

  • Kripke SA, Fox AD, Berman JM, Settle RG, Rombeau JL (1989) Stimulation of intestinal mucosal growth with intracolonic infusion of short chain fatty acids. J Parenteral Enteral Nutr 13:109–116

    Article  CAS  Google Scholar 

  • Kruh J (1982) Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Molec Cell Biochem 42:65–82

    PubMed  CAS  Google Scholar 

  • Liang C-S, Lowenstein JM (1978) Metabolic control of the circulation. Effects of acetate and pyruvate. J Clin Invest 62:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Livesey G (1990) Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr 51:617–637

    PubMed  CAS  Google Scholar 

  • Lobley GE, McRae JC (1985) Acetate utilization in sheep. In: Moe PW, Tyrrell HF, Reynolds PJ (eds) Energy metabolism of farm animals. Rowman & Littlefield, Beltsville, MD, pp 38–41

    Google Scholar 

  • Lowe DM, Tubbs PK (1985) Succinylation and inactivation of 3-hydroxy-3-methylglutaryl-CoA synthase by succinyl-CoA and its possible relevance for the control of ketogenesis. Biochem J 232:37–42

    PubMed  CAS  Google Scholar 

  • Lumeng L, Davis J (1973) The oxidation of acetate by liver mitochondria. FEBS Lett 79:124–126

    Article  Google Scholar 

  • MacCormick K, Notar-Francesco VJ, Sriwatannakul K (1983) Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation. Biochem J 216:499–502

    Google Scholar 

  • Marioka K, Ono T (1978) Butyrate-binding protein from rat and mouse liver. J Biochem 83:349–356

    Google Scholar 

  • Marty J, Vernay M (1984) Absorption and metabolism of volatile fatty acids in the hind-gut of the rabbit. Br J Nutr 51:265–277

    Article  PubMed  CAS  Google Scholar 

  • Mazur A, Rémésy C, Gueux E, Levrat M-A, Demigné C (1990a) Effects of diets rich in fermentable carbohydrates on plasma lipoprotein levels and on lipoprotein catabolism in rats. J Nutr 120:1037–1045

    PubMed  CAS  Google Scholar 

  • Mazur A, Rémésy C, Demigné C (1990b) The effect of high fibre diet on plasma lipoprotein and hormones in genetically obese Zucker rats. Eur J Clin Nutr 20:600–606

    CAS  Google Scholar 

  • Morand C, Redon C, Rémésy C, Demigné C (1990) Non-hormonal and hormonal control of glycogen metabolism in isolated sheep liver cells. Int J Biochem 22:873–881

    Article  PubMed  CAS  Google Scholar 

  • Morand C, Rémésy C, Demigné C (1991) Contrôle du métaboüsme du glycogène au niveau du foie. Diabète Métabolisme (in press)

    Google Scholar 

  • Pethick DW, Lindsay DB, Barker PJ, Northrop AJ (1981) Acetate supply and utilization by the tissues of the sheep in vivo. Br J Nutr 46:97–110

    Article  PubMed  CAS  Google Scholar 

  • Plesko MM, Hargroves JL, Granner DK, Chalkley R (1983) Inhibition by sodium butyrate of enzyme induction by glucocorticoids and dibutyryl cyclic AMP. J Biol Chem 258:13738–13744

    PubMed  CAS  Google Scholar 

  • Rémésy C (1973) Contribution à l’étude de la production et du métabolisme des acides gras volatils chez le rat. Thèse, Université Clermont-Ferrand

    Google Scholar 

  • Rémésy C, Demigné C (1974) Determination of volatile fatty acids in plasma after ethanolic extraction. Biochem J 141:86–91

    Google Scholar 

  • Rémésy C, Demigné C (1976) Partition and absorption of volatile fatty acids in the alimentary canal of the rat. Ann Rech Vétér 7:39–55

    Google Scholar 

  • Rémésy C, Demigné C (1983) Changes in availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats. Ann Nutr Metab 27:57–70

    Article  PubMed  Google Scholar 

  • Rémésy C, Demigné C, Chartier F (1980) Origin and utilization of volatile fatty acids in the rat. Reprod Nutr Develop 20:1339–1349

    Article  Google Scholar 

  • Rérat A, Fiszlewicz M, Giusi A, Vaugelade P (1987) Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of the conscious pigs. J Anim Sci 64:448–456

    PubMed  Google Scholar 

  • Roediger WE (1980) Role of anaerobic bacteria in the welfare of the colonic mucosa in man. Gut 21:793–798

    Article  PubMed  CAS  Google Scholar 

  • Roediger WE (1982) Utilization of nutrients by isolated epithelial cells of rat colon. Gastroenterology 83:424–429

    PubMed  CAS  Google Scholar 

  • Rolandelli RH, Koruda MJ, Settle RG, Rombeau JL (1986) Effects of intraluminal infusion of short chain fatty acids in the healing of colonic anastomosis in the rat. Surgery 100:198–200

    PubMed  CAS  Google Scholar 

  • Rombeau JL, Rolandelli RH, Kripke SA, Settle RG (1989) Citrus pectin and short chain fatty acids in intestinal dysfunction. In: Cummings JH (ed) The role of dietary fiber in enteral nutrition. Abbott International, Abbott Park, IL, pp 75–84

    Google Scholar 

  • Sakata T (1986) Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. J Nutr Sci Vitaminol 32:355–362

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Yajima T (1984) Influence of short chain fatty acids on the epithelial cell division of digestive tract. Q J Exp Physiol 69:639–648

    PubMed  CAS  Google Scholar 

  • Scholte HR, Groot PHE (1975) Organ and intracellular localization of short-chain acyl-CoA synthetases in rat and guinea-pig. Biochim Biophys Acta 409:283–296

    PubMed  CAS  Google Scholar 

  • Shaw L, Engel PC (1985) The suicide inactivation of ox liver short chain acyl-CoA dehydrogenase by propionyl-CoA. Biochem J 230:723–731

    PubMed  CAS  Google Scholar 

  • Snoswell AM, Trimble RP, Fishlock RC, Storer GB, Topping DL (1982) Metabolic effects of acetate in perfused rat liver. Studies on ketogenesis, glucose output, lactate uptake and lipogenesis. Biochim Biophys Acta 716:290–297

    Article  PubMed  CAS  Google Scholar 

  • Söling H-D, Rescher C (1985) On the regulation of cold-labile cytosolic and of mitochondrial acetyl-CoA hydrolase in rat liver. Eur J Biochem 147:111–117

    Article  PubMed  Google Scholar 

  • Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    PubMed  CAS  Google Scholar 

  • Staecker JL, Pitot HC (1988) The effect of sodium butyrate on tyrosine aminotransferase induction in primary cultures of normal adult rat hepatocytes. Arch Biochem Biophys 261:291–298

    Article  PubMed  CAS  Google Scholar 

  • Steffen RP, McKenzie JE, Haddy FJ (1982) The possible role of acetate in exercise hyperemia in dog skeletal muscle. Pflügers Arch 392:315–321

    Article  PubMed  CAS  Google Scholar 

  • Story JA (1985) Dietary fiber and lipid metabolism. Proc Soc Exp Biol Med 180:447–452

    PubMed  CAS  Google Scholar 

  • Thacker PA, Bowland JP (1981) Effects of dietary propionic acid on serum lipids and lipoproteins of pigs fed diets supplemented soybean meal or cánula meal. Can J Anim Sci 61:439–448

    Article  CAS  Google Scholar 

  • Vahouny GV (1985) Dietary fiber and lipid metabolism. Fed Proc 41:2801–2806

    Google Scholar 

  • Vermorel M (1968) Utilisation énergétique de la triacétine par le rat en croissance. Ann Biol Anim Bioch Biophys 8:453–455

    Article  CAS  Google Scholar 

  • Weaver GA, Krause JA, Miller TL, Wolin MJ (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29:1539–1542

    Article  PubMed  CAS  Google Scholar 

  • Whitehead RH, Young GP, Bhatal PS (1986) Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27:1457–1463

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rémésy, C., Demigné, C., Morand, C. (1992). Metabolism and Utilisation of Short Chain Fatty Acids Produced by Colonic Fermentation. In: Schweizer, T.F., Edwards, C.A. (eds) Dietary Fibre — A Component of Food. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1928-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1928-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1930-2

  • Online ISBN: 978-1-4471-1928-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics