Skip to main content

Abstract

Ultrasonic power balances are used to measure the total power of an ultrasonic beam, a parameter which was introduced in Chapters 1, 2 and 3. It is a convenient parameter to measure because many measurement systems are, more or less, portable. The powers from medical ultrasonic equipment range from microwatts, for diagnostic equipment, to several watts for physiotherapy equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Livett AJ, Emery EW, Leeman S. Acoustic radiation pressure, J Sound and Vibration 1981; 76: 1–11

    Article  MATH  Google Scholar 

  2. Torr GR. The acoustic radiation force. Am J Phys 1984; 52: 402–408

    Article  Google Scholar 

  3. Beissner K. Minimum target size in radiation force measurements. J Acoust Soc Am 1984; 76: 1505–1510

    Article  Google Scholar 

  4. Beissner K. Radiation force calculations. Acústica 1987; 62: 255–263

    Google Scholar 

  5. Preston RC. Measurement and characterisation of the acoustic output of medical ultrasonic equipment Part 2. Med and Biol Eng and Comput 1986; 24: 225–234

    Article  Google Scholar 

  6. Carson PL, Fischella PR, Oughton TV. Ultrasonic power and intensities produced by diagnostic ultrasound equipment. Ultrasound Med Biol 1978; 3: 341–350

    Article  Google Scholar 

  7. Hill CR. Calibration of ultrasonic beams for biomedical applications. Phys Med Biol 1970; 15: 241–248

    Article  Google Scholar 

  8. Kossoff G. Balance technique for the measurement of very low ultrasonic power outputs. J Acoust Soc Am 1965; 38: 880–881

    Article  Google Scholar 

  9. Rooney JA. Determination of acoustic power outputs in the microwatt-milliwatt range. Ultrasound Med Biol 1973; 1: 13–16

    Article  Google Scholar 

  10. Wells PNT, Bullen MA, Follett DH, Freundlich HF, Angelí James J. The dosimetry of small ultrasonic beams. Ultrasonics 1963; 1: 106–110

    Article  Google Scholar 

  11. Wells PNT, Bullen MA, Freundlich HF. Milliwatt ultrasonic radiometry. Ultrasonics 1964; 2: 124–128

    Article  Google Scholar 

  12. Wemlen A. A milliwatt ultrasonic servocontrolled balance. Med Biol Eng 1968; 6: 159–165

    Article  Google Scholar 

  13. Kossoff G. Calibration of ultrasonic therapy equipment. Acústica 1962; 12: 84–90

    Google Scholar 

  14. Lunt MJ, Ashley B. A simple radiation balance for measuring ultrasonic power. J Med Eng Tech 1979; 3: 194–197

    Article  Google Scholar 

  15. Shotton KC. A tethered float radiometer for measuring the output from therapy equipment. Ultrasound Med Biol 1980; 6: 131–133

    Article  Google Scholar 

  16. Anson LW, Chivers RC, Adach J. Ultrasonic radiation force devices with non-linear mechanical suspensions. Acústica 1989; 67: 226–234

    Google Scholar 

  17. Farmery MJ, Whittingham TA. A portable radiation-force balance for use with diagnostic ultrasonic equipment. Ultrasound Med Biol 1978; 3: 373–379

    Article  Google Scholar 

  18. Bindal VN, Singh VR, Singh G. Acoustic power measurement of medical ultrasonic probes using a strain gauge technique. Ultrasonics 1980; 18: 28–32

    Article  Google Scholar 

  19. Cornhill CV. Improvement of portable radiation force balance design. Ultrasonics 1982; 20: 282–284

    Article  Google Scholar 

  20. Duck FA, Starritt HC, Aindow JD, Perkins MA, Hawkins AJ. The output of pulse-echo ultrasound equipment: a survey of powers, pressures and intensities. Brit J Radiol 1985; 58: 989–1001

    Article  Google Scholar 

  21. Perkins MA. A versatile force balance for ultrasound power measurement. Phys Med Biol 1989; 34: 1645–1651

    Article  MathSciNet  Google Scholar 

  22. IEEE 790:1989. IEEE guide for medical ultrasonic field parameter measurements, Institute of Electrical and Electronic Engineers Inc. New York, USA, 1990

    Google Scholar 

  23. Livett AJ, Leeman S. Radiation pressure and its measurement, Proceedings of the 1983 IEEE Ultrasonics Symposium, p 749

    Google Scholar 

  24. Pinkerton JMM. A pulse method for the measurement of ultrasonic absorption in liquids: results in water. Nature 1947; 160: 128–129

    Article  Google Scholar 

  25. Duck FA, Perkins MA. Amplitude dependent losses in ultrasound exposure measurement. IEEE Trans Ultrason Ferroelec Freq Contr 1988; 35: 232–241

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London

About this chapter

Cite this chapter

Davidson, F. (1991). Ultrasonic Power Balances. In: Preston, R.C. (eds) Output Measurements for Medical Ultrasound. Springer, London. https://doi.org/10.1007/978-1-4471-1883-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1883-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1885-5

  • Online ISBN: 978-1-4471-1883-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics