Skip to main content

Endothelial and Smooth-Muscle Cells

  • Chapter
Diseases of the Arterial Wall

Abstract

Normal muscular and elastic arteries consist of three morphologically distinct layers [20,325] which will be considered in more detail in Chap.4. The intima consists of a narrow region bounded on the luminal side by a single continuous layer of endothelial cells and peripherally by a fenestrated sheet of elastic fibres, the internal elastic lamina. Between these boundaries are smooth-muscle cells and various components of extracellular connective-tissue matrix. With increasing age in man, intimal smooth-muscle cells and extracellular matrix components accumulate slowly and generally at a uniform rate, except in certain areas where nodular accumulations called “cushions” develop (see Chap 3). Why so few smooth-muscle cells are initially present in the intima, and why the number of these cells normally increases with age, are important questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 49:921–956

    PubMed  CAS  Google Scholar 

  2. Anderson RGW, Brown MS, Goldstein JL (1977) Role of the coated endocytic vesicle in the uptake of receptor- bound low density lipoprotein in human fibroblasts. Cell 10:351–364

    PubMed  CAS  Google Scholar 

  3. Anderton BH (1981) Intermediate filaments: a family of homologous structures. J Muscle Res Cell Motil 2:141–166

    PubMed  CAS  Google Scholar 

  4. Angus JA, Cocks TM, Satoh K (1986) The alpha- adrenoceptors on endothelial cells. Fed Proc 45:2355–2359

    PubMed  CAS  Google Scholar 

  5. Ashton FT, Somlyo AV, Somlyo AP (1975) The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol 98:17–29

    PubMed  CAS  Google Scholar 

  6. Aumailley M, Timpl R (1986) Attachment of cells to basement membrane collagen type IV. J Cell Biol 103:1569–1575

    PubMed  CAS  Google Scholar 

  7. Baldwin AL, Winlove CP (1984) Effect of perfusate composition on binding of ruthenium red and gold colloid to glycoalyx of rabbit aortic endothelium. J Histochem Cytochem 32:259–266

    PubMed  CAS  Google Scholar 

  8. Barja F, Coughlin C, Belin D et al. (1986) Actin isoform synthesis and mRNA levels in quescent and proliferating rat aortic smooth muscle cells in vivo and in vitro. Lab Invest 55:226–233.

    PubMed  CAS  Google Scholar 

  9. Barnes JL, Radnik RA. Gilchrist EP et al. (1984) Size and charge selective permeability defects induced in glomerular basement membrane by a polycation. Kidney Int 25:11–19

    PubMed  CAS  Google Scholar 

  10. Barrett TB, Gajdusek CM, Schwartz SM et al. (1984) Expression of the sis gene by endothelial cells in culture and in vivo. Proc Natl Acad Sci USA 81:6772–6774

    PubMed  CAS  Google Scholar 

  11. Bearer EL, Orci L, Sors P (1985) Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100:418–428

    PubMed  CAS  Google Scholar 

  12. Becker CG, Nachman RL (1973) Contractile proteins of endothelial cells, platelets and smooth muscle. Am J Pathol 71:1–22

    PubMed  CAS  Google Scholar 

  13. Beckerle MC (1986) Identification of a new protein localized at sites of cell substrate adhesion. J Cell Biol 103:1679–1687

    PubMed  CAS  Google Scholar 

  14. Bendayan M (1980) Use of the protein A-gold technique for the morphological study of vascular permeability. J Histochem Cytochem, 28:1251–1254

    PubMed  CAS  Google Scholar 

  15. Bennett GS, Fellini SA, Croop JM et al. (1978) Differences among 100-Å filament subunits from different cell types. Proc Natl Acad Sci USA 75:4364–4368

    PubMed  CAS  Google Scholar 

  16. Bennett MV, Spray DC (1985) Gap junctions. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  17. Bevan JA, Duckies SP (1975) Evidence for alpha-adrenergic receptors on intimai endothelium. Blood Vessels 12:307–319

    PubMed  CAS  Google Scholar 

  18. Bevilacqua MP, Pober JS, Wheeler ME et al. (1985) Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol 121:393–403

    Google Scholar 

  19. Birdwell CR, Gospodarowicz D, Nicolson GL (1978) Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc Natl Acad Sci USA 75:3273–3277

    PubMed  CAS  Google Scholar 

  20. Bloom W, Fawcett DW (1986) A textbook of histology, 11th edn. Saunders, Philadelphia, pp 367–405.

    Google Scholar 

  21. Bond M, Kitazawa T, Somlyo AP et al. (1984) Release and recycling of calcium by the sarcoplasmic reticulum in guinea pig portal vein smooth muscle. J Physiol (Lond) 355:677–695

    CAS  Google Scholar 

  22. Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95:403–413

    PubMed  CAS  Google Scholar 

  23. Bounassisi V (1973) Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures. Exp Cell Res 76:363–368

    Google Scholar 

  24. Bowen-Pope DF, Seifert RA, Ross R (1985) The platelet-derived growth factor receptor. In: Boynton AL, Leffert HL (eds) Control of animal cell proliferation: recent advances, vol 1. Academic Press, New York, pp 281–312

    Google Scholar 

  25. Boyles J, L’Hernault N, Laks H et al. (1981) Evidence for vesicular shuttle in heart capillaries. J Cell Biol 91:418 (abstract)

    Google Scholar 

  26. Bradbury MWB (1985) The blood-brain barrier. Transport across the cerebral endothelium. Circ Res 57:213–222

    PubMed  CAS  Google Scholar 

  27. Branton D, Bullivant S, Gilula NB et al. (1975) Freeze-etching nomenclature. Science 190:54–56

    PubMed  CAS  Google Scholar 

  28. Bretcher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258:43–49

    Google Scholar 

  29. Brown MS, Ho Y, Goldstein J (1980) The cholesteryl ester cycle in macrophage foam cells. Continued hydrolysis and reesterification of cytoplasmic cholesteryl esters. J Biol Chem 255:9344–9352

    PubMed  CAS  Google Scholar 

  30. Brown PJ, Juliano RL (1986) Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines. J Cell Biol 103:1595–1603

    PubMed  CAS  Google Scholar 

  31. Bruns RR, Palade GE (1968) Studies on blood capillaries. I. General organization of muscle capillaries. J Cell Biol 37:244–276

    PubMed  CAS  Google Scholar 

  32. Bruns RR, Palade GE (1968) Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol 37:277–299

    PubMed  CAS  Google Scholar 

  33. Bullivant S (1981) Possible relationship between tight junction structure and function. In: Leader JP (ed) Epithelial ion and water transport. Raven Press, New York, pp 265–275

    Google Scholar 

  34. Bundgaard M (1980) Transport pathways in capillaries in search of pores. Ann Rev Physiol 42:325–336

    CAS  Google Scholar 

  35. Bundgaard M, Frokjaer-Jensen J (1982) Functional aspects of the ultrastructure of terminal blood vessels: a quantitative study on consecutive segments of the frog mesenteric microvasculature. Microvasc Res 23:1–30

    PubMed  CAS  Google Scholar 

  36. Bundgaard M, Frokjaer-Jensen J, Crone C (1979) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci USA 76:6439–6442

    PubMed  CAS  Google Scholar 

  37. Bundgaard M, Hayman P, Crone C (1983) The three dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–369

    PubMed  CAS  Google Scholar 

  38. Buonassisi V, Venter JC (1976) Hormone and neurotransmitter receptors in an established vascular endothelial cells line. Proc Natl Acad Sci USA 73:1612–1616

    PubMed  CAS  Google Scholar 

  39. Burke JM, Ross R (1977) Collagen synthesis by arterial smooth muscle cells during proliferation and quiescence in culture. Exp Cell Res 107:387–395

    PubMed  CAS  Google Scholar 

  40. Burke JM, Ross R (1979) Synthesis of connective tissue macromolecules by smooth muscle. Int Rev Connect Tissue Res 8:119–157

    PubMed  CAS  Google Scholar 

  41. Burridge K (1981) Are stress fibers contractile? Nature 294:691–692

    PubMed  CAS  Google Scholar 

  42. Burridge K, Connell L (1983) A new protein of adhesion plaques and ruffling membranes. J Cell Biol 97:359–367

    PubMed  CAS  Google Scholar 

  43. Burridge K, Mangeat P (1984) An interaction between vinculin and talin. Nature 308:744–745

    PubMed  CAS  Google Scholar 

  44. Busch C, Cancilla PA, De Bault et al. (1982) Use of endothelium cultured on microcarriers as a model for the microcirculation. Lab Invest 47:498–504

    PubMed  CAS  Google Scholar 

  45. Byers HR, Fujiwara K (1982) Stress fibers in cells in situ: immunofluoresence visualization with antiactin, antimyosin and anti-alpha-actinin. J Cell Biol 93:804–811

    PubMed  CAS  Google Scholar 

  46. Campbell GR, Chamley JH, Burnstock G (1984) Development of smooth muscle cells in tissue culture. J Anat 117:295–312

    Google Scholar 

  47. Caspar D, Goodenough D, Makowski L et al. (1977) Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol 74:605–628

    PubMed  CAS  Google Scholar 

  48. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J. Physiol (Lond) 317:263–279

    CAS  Google Scholar 

  49. Castellot JJ, Addonizio ML, Rosenberg RD et al. (1981) Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol 90:372–379

    PubMed  CAS  Google Scholar 

  50. Castellot JJ, Choay J, Lormeau J-C et al. (1986) Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3–0-sulfate group. J Cell Biol 102:1979–1984

    PubMed  CAS  Google Scholar 

  51. Castellot JJ, Favreau LV, Karnovsky MJ et al. (1982) Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin: possible role of a platelet endoglycosidase. J Biol Chem 257:11256–11260

    PubMed  CAS  Google Scholar 

  52. Castellot JJ, Rosenberg RD, Karnovsky MJ: Endothelium, heparin and the regulation of vascular smooth muscle cell growth. In: Jaffe E (ed) Biology of endothelial cells. Martinus Nijhoff, Boston, Massachusetts, pp 118–128

    Google Scholar 

  53. Caulfield JP, Farquhar MG (1986) Distribution of anionic sites in glomerular basement membrane, their possible role in filtration and attachment. Proc Natl. Acad Sci USA 73:1646–1650

    Google Scholar 

  54. Chait A, Ross R, Alberts JJ et al. (1980) Platelet- derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci USA 77:4084–4088

    PubMed  CAS  Google Scholar 

  55. Chambers RW, Zweifach BW (1947) Intercellular cement and capillary permeability. Physiol Rev 27:436–463

    PubMed  CAS  Google Scholar 

  56. Chamley-Campbell JH, Campbell GR (1981) What controls smooth muscle phenotype? Atherosclerosis 40:347–357

    PubMed  CAS  Google Scholar 

  57. Chamley-Campbell JH, Campbell GR, McConnell JD et al. (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522

    Google Scholar 

  58. Chamley-Campbell JH, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    PubMed  CAS  Google Scholar 

  59. Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J. Cell Biol 89:379–383

    PubMed  CAS  Google Scholar 

  60. Chen K, Wight TN (1984) Proteoglycans in arterial smooth muscle cell cultures: an ultrastructural histo- chemical analysis. J Histochem Cytochem 32:347–357

    PubMed  CAS  Google Scholar 

  61. Cherry PD, Furchgott RF, Zawadzki JV et al. (1982) Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sei USA 79:2106–2210

    CAS  Google Scholar 

  62. Cheung WY (1982) Calmodulin. Sci Am 246:48–56

    Google Scholar 

  63. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    PubMed  CAS  Google Scholar 

  64. Clementi F, Palade GE (1969) Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol 41:33–58

    PubMed  CAS  Google Scholar 

  65. Clough G, Michel CC (1981) The role of vesicles in the transport of ferritin through frog endothelium. J Physiol (Lond) 315:127–142

    CAS  Google Scholar 

  66. Clowes AW, Karnovsky MJ (1977) Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626

    PubMed  CAS  Google Scholar 

  67. Clowes AW, Reidy MA, Clowes MM (1983) Mechanisms of stenosis after arterial injury. Lab Invest 49:208–215

    PubMed  CAS  Google Scholar 

  68. Cocks TM, Angus JA, Campbell JH et al. (1985) Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J Cell Physiol 123:310–320

    PubMed  CAS  Google Scholar 

  69. Collins T, Korman AJ, Wake CT et al. (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81:4917–4921

    PubMed  CAS  Google Scholar 

  70. Colucci M, Balconi G, Lorezet R et al. (1983) Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 71:1893–1896

    PubMed  CAS  Google Scholar 

  71. Costello B, Chadwick C, Saito A et al. (1986) Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum. J Cell Biol 103:741–753

    PubMed  CAS  Google Scholar 

  72. Couchman JR, Badley RA, Rees DA (1983) Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts. J Muscle Res Cell Motil 4:647–661

    PubMed  CAS  Google Scholar 

  73. Couchman JR, Hook M, Rees DA, Timpl R (1983) Adhesion, growth and matrix production by fibroblasts on laminin subunits. J Cell Biol 96:177–183

    PubMed  CAS  Google Scholar 

  74. Craig SW (1985) Alpha-actinin, an f-actin cross-linking protein, interacts directly with vinculin. J Cell Biol 101:136 (abstract)

    Google Scholar 

  75. Crone CY (1986) Modulation of solute permeability in microvascular endothelium. Fed Proc 45:77–83

    PubMed  CAS  Google Scholar 

  76. Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res 20:96–99

    PubMed  CAS  Google Scholar 

  77. Davies PF (1986) Biology of disease: vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest 55:5–24

    PubMed  CAS  Google Scholar 

  78. Davies PF, Ganz P, Diehl PS (1985) Methods in laboratory investigation: reversible microcarrier-mediated junctional communication between endothelial and smooth muscle cell monolayers. An in vitro model of vascular cell interactions. Lab Invest 53:710–718

    PubMed  CAS  Google Scholar 

  79. Davies PF, Rennke HG, Cotran RS (1981) Influence of molecular charge upon the endocytosis and intracellular fate of peroxidase activity in cultured arterial endothelium. J Cell Sci 49:69–86

    PubMed  CAS  Google Scholar 

  80. Day AS, Alavi M, Moore S (1985) Influx of (3H, 14C) cholesterol-labelled lipoprotein into re-endothelialized and de-endothelialized areas of ballooned aortas in normal-fed and cholesterol-fed rabbits. Atherosclerosis 55:313–330

    Google Scholar 

  81. Decker RS (1976) Hormonal regulation of gap junction differentiation. J Cell Biol 69:669–685

    PubMed  CAS  Google Scholar 

  82. De Chastonay C, Gabbiani G, Elemer G et al. (1983) Remodeling of the rat aortic endothelial layer during experimental hypertension. Changes in replication rate, cell density, and surface morphology. Lab Invest 48:45–52

    PubMed  Google Scholar 

  83. De Forrest JM, Hollis TM (1978) Shear stress and aortic histamine synthesis. Am J Physiol 234:H701–H705

    Google Scholar 

  84. De Mey JG, Vanhoutte PM (1982) Heterogenous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51:439–447

    PubMed  Google Scholar 

  85. De Schutter G, Wuytack F, Verbist J, Casteels R (1984) Tissue levels and purification by affinity chromatography of the calmodulin-stimulated Ca2+-transport ATP-ase in pig antrum smooth muscle. Biochim Biophys Acta 773:1–10

    PubMed  Google Scholar 

  86. Devine CE (1978) Vascular smooth muscle morphology and ultrastructure. In: Kaley G, Altura BM (eds) Micro-circulation, vol II. University Park Press, Baltimore, pp 4–39

    Google Scholar 

  87. Devine CE, Somlyo AP (1971) Thick filaments in vascular smooth muscle. J Cell Biol 49:636–649

    PubMed  CAS  Google Scholar 

  88. De Witt DL, Day JS, Sonnenburg WK et al. (1983) Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovin aorta. J Clin Invest 72:1882–1888

    Google Scholar 

  89. Diamond JM (1978) Channels in epithelial cell membranes and junctions. Fed Proc 37:2639–2644

    PubMed  CAS  Google Scholar 

  90. Diamond J, Chu EB (1983) Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res Commun Chem Pathol Pharmacol 41:369–381

    PubMed  CAS  Google Scholar 

  91. Di Corletto PE, Bowen-Pope DF (1983) Cultured endothelial cells produce a platelet-derived growth factor- like protein. Proc Natl Acad Sci USA 80:1919–1923

    Google Scholar 

  92. Di Corletto PE, Gajdusek CM, Schwartz SM et al. (1983) Biochemical properties of the endothelium- derived growth factor: comparison to other growth factors. J Cell Physiol 114:339–345

    Google Scholar 

  93. Dicorleto PE, Zilversmit DB (1975) Lipoprotein lipase activity in bovine aorta. Proc Soc Exp Biol Med 148:1101–1105

    PubMed  CAS  Google Scholar 

  94. Dinarello CA (1985) An update on human Interleukin- 1: from molecular biology to clinical relevance. J Clin Immunol 5:287–297

    PubMed  CAS  Google Scholar 

  95. Dragsten PR, Blumenthal R, Handler JS (1981) Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294:718–722

    PubMed  CAS  Google Scholar 

  96. Drenckhahn D (1983) Cell motility and cytoplasmic filaments in vascular endothelium. Prog Appl Microcirc 1:53–70

    Google Scholar 

  97. Driska SP, Murphy RA (1978) An estimate of cellular force generation in an arterial smooth muscle with a high actin:myosin ratio. Blood Vessels 15:26–32

    PubMed  CAS  Google Scholar 

  98. Endo M, Yagi S, Iino M (1982) Tension-pCa relation and sarcoplasmic reticulum responses in chemically skinned smooth muscle fibers. Fed Proc 41:2245–2250

    PubMed  CAS  Google Scholar 

  99. Engel J, Odermatt E, Engel A et al. (1981) Shapes, domain organizations, and flexibility of laminin and fibronectin, two multifunctional proteins of the extra- cellular matrix. J Mol Biol 150:97–120

    PubMed  CAS  Google Scholar 

  100. Fantome JE, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reactions. Am J Pathol 107:405–410

    Google Scholar 

  101. Farquhar MG, Palade G (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    PubMed  CAS  Google Scholar 

  102. Fenstermacher JD, Rapoport SI (1984) Blood-brain barrier. In: Renkin EM, Michel CC (eds) Handbook of physiology, section 2: the cardiovascular system, vol IV: microcirculation, part 2. American Physiological Society, Bethesda, pp 969–1000

    Google Scholar 

  103. Flaherty JT, Pierre JE, Ferrans VJ et al. (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30:23–33

    PubMed  CAS  Google Scholar 

  104. Florey, Lord, Sheppard BL (1970) The permeability of arterial endothelium to horseradish peroxidase. Proc R Soc Lond (Biol) 174:435–443

    CAS  Google Scholar 

  105. Folkman J, Haudenschild CC (1980) Angiogenesis in vitro. Nature 288:551–556

    PubMed  CAS  Google Scholar 

  106. Form DM, Pratt BM, Madri JA (1986) Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab Invest 55:521–530

    PubMed  CAS  Google Scholar 

  107. Fowler S, Wolinsky H (1980) Lysosomes in vascular smooth cells. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, section 2: the cardiovascular system, vol II: vascular smooth muscle. American Physiological Society, Bethesda, pp 133–160

    Google Scholar 

  108. Fox PL, Di Corleto PE (1984) Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 121:298–308

    PubMed  CAS  Google Scholar 

  109. Frank ED, Warren L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci USA 78:3020–3024

    PubMed  CAS  Google Scholar 

  110. Franke WW, Schmid E, Freudenstein C et al. (1980) Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol 84:633–654

    PubMed  CAS  Google Scholar 

  111. Franke WW, Schmid E, Osborn M et al. (1979) Intermediate-sixed filaments of human endothelial cells. J Cell Biol 81:570–580

    PubMed  CAS  Google Scholar 

  112. Franke WW, Schmid E, Winter S et al. (1979) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 123:25–46

    PubMed  CAS  Google Scholar 

  113. Friedman SM (1983) Vascular reactivity. In: Genest J, Kuchel O, Hamet P et al. (eds) Hypertension. Phy- siopathology and treatment, 2nd edn. McGraw-Hill, New York, pp 457–473

    Google Scholar 

  114. Friend DS,Gilula NB (1972) Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53:758–776

    PubMed  CAS  Google Scholar 

  115. Fritze LMS, Reilly CF, Rosenberg RD (1985) An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol 100:1041–1049

    PubMed  CAS  Google Scholar 

  116. Frokjaer-Jensen J (1980) Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 73:9–20

    PubMed  CAS  Google Scholar 

  117. Fry GN, Devine CE, Burnstock G (1977) Freeze-fracture studies of nexuses between smooth muscle cells. J Cell Biol 72:26–34

    PubMed  CAS  Google Scholar 

  118. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–572

    PubMed  CAS  Google Scholar 

  119. Furchgott RF (1984) Role of endothelium in responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24:175–197

    PubMed  CAS  Google Scholar 

  120. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  121. Furchgott RF, Zawadzki JV, Cherry PD (1981) Role of the endothelium in the vasodilator response to acetylcholine. In: Vanhoutte PM, Leusen I (eds) Vasodilatation. Raven Press, New York, pp 49–66

    Google Scholar 

  122. Gabbiani G, Badonnel M-C, Rona G (1975) Cytoplasmic contractile apparatus in aortic endothelial cells of hypertensive rats. Lab Invest 32:227–234

    PubMed  CAS  Google Scholar 

  123. Gabbiani G, Chaponnier C, Hüttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 96:561–568

    Google Scholar 

  124. Gabbiani G, Elemer G, Guelpa C et al. (1979) Morphologic and functional changes of the aortic intima during experimental hypertension. Am J Pathol 96:399–422

    PubMed  CAS  Google Scholar 

  125. Gabbiani G, Gabbiani F, Lombardi D et al. (1983) Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl Acad Sci USA 80:2361–2364

    PubMed  CAS  Google Scholar 

  126. Gabbiani G, Schmid E, Winter S et al. (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 78:298–302

    PubMed  CAS  Google Scholar 

  127. Gabella G (1981) Structure of smooth muscle. In: Bulbring E, Brading Af, Jones AW et al. (eds) Smooth muscle: an assessment of current knowledge. Edward Arnold, London, pp 1–46

    Google Scholar 

  128. Gabella G (1983) Asymmetric distribution of dense bands in muscle cells of mammalian arterioles. J Ultrastruct Res 84:24–33

    PubMed  CAS  Google Scholar 

  129. Gabella G (1984) Structural apparatus for force transmission in smooth muscles. Physiol Rev 64:455–477

    PubMed  CAS  Google Scholar 

  130. Gajdusek C, Carbon S, Ross R et al. (1986) Activation of coagulation releases endothelial cell mitogens. J Cell Biol 103:419–428

    PubMed  CAS  Google Scholar 

  131. Ganz P, Davies PF, Leopold JA et al. (1985) Endothelial-vascular smooth muscle interactions in culture. Circulation [Suppl III] 72:265A

    Google Scholar 

  132. Ganz P, Davies PF, Leopold JA et al. (1986) Short and long-term interactions of endothelium and vascular smooth muscle in co-culture: effects of cyclic GMP production. Proc Natl Acad Sci USA 83:3552–3556

    PubMed  CAS  Google Scholar 

  133. Garfield RE, Somlyo AP (1985) Structure of smooth muscle. In: Grover AK, Daniel EE (eds) Calcium and smooth muscle contractility. Humana Press, Clifton, New Jersey, pp 1–36

    Google Scholar 

  134. Geiger B (1979) A 130K protein from chicken gizzard. Its localization at the termini of microfilaments bundles in cultured chicken cells. Cell 18:193–205

    PubMed  CAS  Google Scholar 

  135. Geiger B, Avnur Z, Kreis TE et al. (1984) The dynamic of cytoskeletal organization in areas of cell contact. In: Shay JW (ed) Cell and muscle motility. Plenum Press, New York, pp 195–234

    Google Scholar 

  136. Geiger B, Tokuyasu KT, Dutton AH et al. (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA 77:4127–4131

    PubMed  CAS  Google Scholar 

  137. Geiger B, Volk T, Volberg T (1985) Molecular heterogeneity of adherens junctions. J Cell Biol 101:1523–1531

    PubMed  CAS  Google Scholar 

  138. Gerrity RG, Adams EP, Cliff WJ (1975) The aortic tunica of the developing rat. II. Incorporation by medial cells of 3H-proline into collagen and elastin: autoradiographic and chemical studies. Lab Invest 32:585–600

    PubMed  CAS  Google Scholar 

  139. Gerrity RG, Cliff WJ (1975) The aortic tunica media of the developing rat. I. Quantitative sterologic and biochemical analysis. Lab Invest 32:585–600

    PubMed  CAS  Google Scholar 

  140. Ghitescu L, Fixman A, Simionescu M et al. (1986) Specific binding sites for albumin restricted to plas- malemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 102:1304–1311

    PubMed  CAS  Google Scholar 

  141. Giacomelli F, Wiener J (1974) Regional variation in the permeability of rat thoracic aorta. Am J Pathol 75:513–528

    PubMed  CAS  Google Scholar 

  142. Gilula NB, Reeves OR, Steinbach A (1972) Metabolic coupling, ionic coupling, and cell contacts. Nature 235:262–265

    PubMed  CAS  Google Scholar 

  143. Gimbrone MA Jr, Cotran RS (1975) Human vascular smooth muscle in culture. Growth and ultastructure. Lab Invest 33:16–27

    PubMed  Google Scholar 

  144. Gimbrone MA Jr, Cotran RS, Folkman J (1974) Human vascular endothelial cells in culture: Growth and DNA synthesis. J Cell Biol 60:673–684

    PubMed  CAS  Google Scholar 

  145. Ginsburg R, Zera PH (1984) Endothelial relaxant factor in the human epicardial coronary artery. Circulation [Suppl II]. 70:122A

    Google Scholar 

  146. Goldberg ID, Stemerman MB, Ransil BJ et al. (1980) In vivo aortic muscle cell growth kinetics. Differences between thoracic and abdominal segments after intimai injury in the rabbit. Circ Res 47:182–189

    PubMed  CAS  Google Scholar 

  147. Goldstein JL, Anderson RGW, Brown MS (1979) Coated pits, coated vesicles and receptor-mediated endocytosis. Nature 279:679–685

    PubMed  CAS  Google Scholar 

  148. Goldstein JL, Brown MS (1977) The low density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46:897–930

    PubMed  CAS  Google Scholar 

  149. Gonnerman WA, Ferrara R, Franzblau C (1981) Measurement of medium lysil oxidase activity in aorta smooth muscle cells. Effects of multiple medium changes and inhibition of protein synthesis. Biochemistry 20:3864–3867

    PubMed  CAS  Google Scholar 

  150. Goodenough DA (1974) Bulk isolation of mouse hepa- tocyte gap junctions. Characterization of the principal protein, connexin. J Cell Biol 61:557–563

    PubMed  CAS  Google Scholar 

  151. Gospodarowicz D, Ill CR (1980) Extracellular matrix and the control of proliferation of vascular endothelial cells. J Clin Invest 65:1351–1364

    PubMed  CAS  Google Scholar 

  152. Gotlieb AI, McBurnie ML, Subrahmanyan L et al. (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 91:589–594

    PubMed  CAS  Google Scholar 

  153. Grega GJ (1986) Role of the endothelial cell in the regulation of microvascular permeability to molecules. Introductory remarks. Fed Proc 45:75–76

    PubMed  CAS  Google Scholar 

  154. Grega GJ, Adamski SW, Dobbins DE (1986) Physiological and pharmacological evidence for the regulation of permeability. Fed Proc 45:96–100

    PubMed  CAS  Google Scholar 

  155. Grega GJ, Svensjö E, Haddy FJ (1981) Macro- molecular permeability of the microvascular membrane: physiological and pharmacological regulation. Microcirculation 1:325–341

    Google Scholar 

  156. Griffith TM, Edwards DH, Collins P et al. (1985) Endothelial derived relaxant factor. JR Coll Physicians Lond 19:74–79

    CAS  Google Scholar 

  157. Griffith TM, Edwards DH, Lewis MJ et al. (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308:645–647

    PubMed  CAS  Google Scholar 

  158. Griffith TM, Henderson AH, Hughes-Edwards D et al. (1984) Isolated perfused rabbit coronary artery and aortic strip preparations: the role of endothelium- derived relaxant factor. J Physiol 351:13–24

    PubMed  CAS  Google Scholar 

  159. Grotte G (1956) Passage of dextran molecules across the blood-lymph barrier. Acta Clin Scand [Suppl] 211:1–84

    CAS  Google Scholar 

  160. Guyton JR, Rosenberg RD, Clowes AW et al. (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res 46:625–634

    PubMed  CAS  Google Scholar 

  161. Habib JB, Wells SL, Williams CL et al. (1984) Atherosclerosis impairs endothelium-dependent arterial relaxation. Circulation [Suppl II] 70:123 (abstract)

    Google Scholar 

  162. Hansford RG (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102:1–72

    PubMed  CAS  Google Scholar 

  163. Hartshorne DJ (1982) Phosphorylation of myosin and the regulation of smooth-muscle actomyosin. In: Dowben RM, Shay JW (eds) Cell and muscle motility II. Plenum Press, New York, pp 188–220

    Google Scholar 

  164. Hartshorne DJ, Gorecka A (1980) Biochemistry of the contractile proteins of smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, section 2: the cardiovascular system, vol II: vascular smooth muscle. American Physiological Society, Bethesda, pp 93–120

    Google Scholar 

  165. Hascall VC, Hascall GK (1981) Proteoglycans. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 39–63

    Google Scholar 

  166. Hasegawa T, Hasegawa E, Chen W-T et al. (1985) Characterisation of a membrane-associated glycoprotein complex implicated in cell adhesion to fibronectin. J Cell Biochem 28:307–318

    PubMed  CAS  Google Scholar 

  167. Heltianu C, Simionescu M, Simioniescu N (1982) Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characterstic high-affinity binding sites in venules. J Cell Biol 93:357–364

    PubMed  CAS  Google Scholar 

  168. Hermsmeyer K (1984) Altered arterial muscle ion transport mechanism in the spontaneously hypertensive rat. J Cardiovasc Pharmacol 6:S10-S15

    PubMed  Google Scholar 

  169. Hermsmeyer K, Harder D (1986) Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am J Physiol 250:C557-C562

    PubMed  CAS  Google Scholar 

  170. Herzberg EL, Lawrence RS, Gilula NB (1981) Gap junctional communication. Annu Rev Physiol 43:479–491

    Google Scholar 

  171. Hoover RL, Rosenberg R, Haering W et al. (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ Res 47:578–583

    PubMed  CAS  Google Scholar 

  172. Hopkins NK, Gorman RR (1981) Regulation of endothelial cell cyclic nucleotide metabolism by prostacyclin. J Clin Invest 67:540–546

    PubMed  CAS  Google Scholar 

  173. Horan KL, Adamski SW, Ayele W et al. (1986) Evidence that prolonged histamine suffusions produce transient increases in vascular permeability subsequent to the formation of venular macromolecular leakage sites. Proof of the Majno-Palade hypothesis. Am J Pathol 123:570–576

    PubMed  CAS  Google Scholar 

  174. Horwitz A, Duggan K, Buck C et al. (1986) Interaction of the plasma membrane fibronectin receptor with talin: a transmembrane linkage. Nature 320:531–533

    PubMed  CAS  Google Scholar 

  175. Horwitz A, Duggan K, Greggs R et al. (1985) The cell- substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 101:2134–2144

    PubMed  CAS  Google Scholar 

  176. Hüttner I, Boutet M, More RH (1973) Gap junctions in arterial endothelium. J Cell Biol 57:247–252

    PubMed  Google Scholar 

  177. Hüttner I, Boutet M, More RH (1973) Studies on protein passage through arterial endothelium. I. Structural correlates of permeability in rat arterial endothelium. Lab Invest 28:672–677

    PubMed  Google Scholar 

  178. Hüttner I, Boutet M, More RH (1973) Studies on protein passage though arterial endothelium. II. Regional differences in permeability to fine structural protein tracers in arterial endothelium of normotensive rat. Lab Invest. 28:678–685

    PubMed  Google Scholar 

  179. Hüttner I, Boutet M, Rona G et al. (1973) Studies on protein passage through arterial endothelium. III. Effect of blood pressure levels on the passage of fine structural protein tracers through rat arterial endothelium. Lab Invest 29:536–546

    PubMed  Google Scholar 

  180. Hüttner I, Gabbiani G (1982) Vascular endothelium: recent advances and unanswered questions. Lab Invest 47:409–411 (editorial)

    PubMed  Google Scholar 

  181. Hüttner I, Gabbiani G (1983) Vascular endothelium in hypertension. In: Genest J, Kuchel O, Hamel P et al. (eds) Hypertension: pathophysiology and treatment. McGraw Hill, New York, pp 473–488

    Google Scholar 

  182. Hüttner I, Mocostabella P, De Chastonay C, Gabbiani G (1982) Volume, surface and junctions of rat aortic endothelium during experimental hypertension. A morphometric and freeze-fracture study. Lab Invest 46:489–504

    PubMed  Google Scholar 

  183. Hüttner I, Peters HY (1978) Heterogeneity of cell junctions in rat aortic endothelium: a freeze-fracture study. J Ultrastruct Res 64:303–308

    PubMed  Google Scholar 

  184. Hüttner I, Walker C, Gabbiani G (1985) Aortic endothelial cell during regeneration. Remodeling of cell junctions, stress fibers, and stress fiber-membrane attachment domains. Lab Invest 53:287–302

    PubMed  Google Scholar 

  185. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    PubMed  CAS  Google Scholar 

  186. Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    PubMed  CAS  Google Scholar 

  187. Isomura T, Dvorak Am, Garcia RI et al. (1986) Inbred guinea pig aortic endothelial cell clones. Model for studying the vascular endothelium under totally isologous conditions. Lab Invest 55:703–716

    PubMed  CAS  Google Scholar 

  188. Iverius PH (1972) The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem 247:2607–2613

    PubMed  CAS  Google Scholar 

  189. Jaffe EA (1982) Synthesis of factor VIII by endothelial cells. Ann NY Acad Sci 401:163–169

    PubMed  CAS  Google Scholar 

  190. Jaffe EA, Hoyer LW, Nachman RL (1974) Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci USA 71:1906–1909

    PubMed  CAS  Google Scholar 

  191. Jaffe EA, Nachman RL, Becker CC et al. Culture of human endothelial cells derived from umbilical veins: Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Google Scholar 

  192. Jefferies WA, Brandon MR, Hunt SV et al. (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    PubMed  CAS  Google Scholar 

  193. Jockusch BM, Isenberg G (1981) Interaction of alpha- actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci USA 78:3005–3009

    PubMed  CAS  Google Scholar 

  194. Johansson B, Somlyo AP (1980) Electrophysiology and excitation-contraction coupling. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, section 2: the cardiovascular system, vol II: vascular smooth muscle. American Physiological Society, Bethesda, pp 301–323

    Google Scholar 

  195. Johnson PC (1978) Myogenic tone in resistance vessels. In: Vanhoutte P, Leusen I (eds) Mechanism of vasodilatation. Karger, Basel, pp 73–78

    Google Scholar 

  196. Johnson AR, Erdos EG (1977) Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) angio- tensinase. J Clin Invest 59:684–695

    PubMed  CAS  Google Scholar 

  197. Jones AW (1981) Vascular smooth muscle and alterations during hypertension. In: Bülbring E, Brading AF, Jones AW et al. (eds) Smooth muscle: an assessment of current knowledge, Edward Arnold, London pp 397–429

    Google Scholar 

  198. Joyce NC, Haire MF, Palade GE (1985) Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol 100:1379–1386

    PubMed  CAS  Google Scholar 

  199. Joyce NC, Haire MF, Palade GE (1985) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395

    PubMed  CAS  Google Scholar 

  200. Kachar B, Pinto Da Silva P (1981) Rapid massive assembly of tight junction strands. Science. 213:541–544

    PubMed  CAS  Google Scholar 

  201. Kachar B, Reese TS (1982) Evidence for the lipidic nature of tight junction strands. Nature 296:464–466

    PubMed  CAS  Google Scholar 

  202. Kagan HM, Vaccaro CA, Bronson RE et al. (1986) Ultrastructural immunolocalization of lysil oxidase in vascular connective tissue. J Cell Biol 103:1121–1128

    PubMed  CAS  Google Scholar 

  203. Kannon MS, Daniel EE (1978) Formation of gap junctions by treatment in vitro with potassium conductance blockers. J Cell Biol 78:338–348

    Google Scholar 

  204. Kanwar YS (1984) Biology of disease. Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21

    PubMed  CAS  Google Scholar 

  205. Karnovsky MJ (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236

    PubMed  CAS  Google Scholar 

  206. Karnovsky MJ (1981) Endothelial-vascular smooth muscle cell interactions. Am J Pathol 100:200–206

    Google Scholar 

  207. Killackey JJF, Johnston MG, Movat HZ (1986) Increased permeability of microcarrier cultured endothelial monolayers in response to histamine and thrombin. Am J Pathol 122:50–61

    PubMed  CAS  Google Scholar 

  208. Kimes BW, Brandt BL (1976) Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp Cell Res 98:349–366

    PubMed  CAS  Google Scholar 

  209. King GL, Johnson SM (1985) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586

    PubMed  CAS  Google Scholar 

  210. Kinsella MG, Wight TN (1986) Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration. J Cell Biol 102:679–687

    PubMed  CAS  Google Scholar 

  211. Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Ann Rev Biochem 49:489–515

    PubMed  CAS  Google Scholar 

  212. Kleinman HK, Cannon FB, Laurie GW et al. (1985) Biological activities of laminin. J Cell Biochem 27:317–325

    PubMed  CAS  Google Scholar 

  213. Kleinman HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485

    PubMed  CAS  Google Scholar 

  214. Knudsen K, Horwitz A, Buck C (1985) A monoclonal antibody identifies a glycoprotein complex involved in cell-substratum adhesion. Exp Cell Res 157:218–226

    PubMed  CAS  Google Scholar 

  215. Kocher O, Skalli O, Bloom WS et al. (1984) Cyto- skeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimai thickening. Lab Invest 50:645–562

    PubMed  CAS  Google Scholar 

  216. Kocher O, Skalli O, Cerutti D et al. (1985) Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study. Circ Res 56:829–838

    PubMed  CAS  Google Scholar 

  217. Kontos HA (1985) Oxygen radicals in cerebral vascular injury. Circ Res 57:508–516

    PubMed  CAS  Google Scholar 

  218. Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary walls. In: Hamilton WF, Dow P (eds) Handbook of physiology, section 2: circulation, vol II. American Physiological Society, Washington DC pp 961–1034

    Google Scholar 

  219. Larkin JM, Donzell WC, Anderson RGW (1986) Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol 103:2619–2627

    PubMed  CAS  Google Scholar 

  220. Larson DM, Fujiwara K, Alexander RW et al. (1984) Heterogeneity of myosin antigenic expression in vascular smooth muscle in vivo. Lab Invest 50:401–407

    PubMed  CAS  Google Scholar 

  221. Larson DM, Sheridan JD (1982) Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures. J Cell Biol 92:183–191

    PubMed  CAS  Google Scholar 

  222. Larson DM, Sheridan JD (1985) Junctional transfer in cultured vascular endothelium. I. Dye and nucleotide transfer. J Membr Biol 83:157–167

    PubMed  CAS  Google Scholar 

  223. Lau K, Thomas D, Eby B (1986) The nature and role of disturbances in calcium metabolism in genetic hypertension. Fed Proc 45:2752–2757

    PubMed  CAS  Google Scholar 

  224. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256

    PubMed  CAS  Google Scholar 

  225. Lee KT, Janakidevi K, Kroms M et al. (1985) Mosaicism in female hybrid hares heterozygous for glucose- 6-phosphase dehydrogenase. VII. Evidence for selective advantage of one phenotype over the other in ditypic samples from aortas of hares fed cholesterol oxidation products. Exp Mol Pathol 42:71–77

    PubMed  CAS  Google Scholar 

  226. Libby P, Ordovas JM, Auger KR et al. (1986) Endotoxin and tumor necrosis factor induce Interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 124:179–185

    PubMed  CAS  Google Scholar 

  227. Loewenstein WR (1979) Junctional intercellular communications and the control of growth. Biochim Biophys Acta 560:1–65

    PubMed  CAS  Google Scholar 

  228. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913

    PubMed  CAS  Google Scholar 

  229. Lyberg T, Galdal K, Evensen S et al. (1983) Cellular cooperation in endothelial thromboplasmin synthesis. Br J Haematol 53:85–95

    PubMed  CAS  Google Scholar 

  230. Madri JA, Stenn KS (1982) Aortic endothelial cell migration. I. Matrix requirements and composition. Am J Pathol 106:80–186

    Google Scholar 

  231. Majno G (1965) Ultrastructure of the vascular membrane. In: Hamilton WF, Dow P (ed) Handbook of physiology, section 2: circulation, vol III. American Physiological Society, Washington DC, pp 2293–2375

    Google Scholar 

  232. Majno G, Joris I (1978) Endothelium 1977. A review. In: Chandler AB, Eurenius K, McMillan GC et al. (eds) The thrombotic process in atherogenesis. Plenum Press, New York, pp 169–225, 481–526

    Google Scholar 

  233. Majno G, Palade GE (1961) Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 11:571–605

    PubMed  CAS  Google Scholar 

  234. Majno G, Palade GE, Schoefl GI (1961) Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 11:607–626

    PubMed  CAS  Google Scholar 

  235. Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamin-type mediators: an electron microscopic study. J Cell Biol 42:647–672

    PubMed  CAS  Google Scholar 

  236. Majno G, Underwood JM, Zand T et al. (1985) The significance of endothelial stomata and stigmata in the rat aorta. An electron microscopic study. Virchows Arch [A] 408:75–91

    CAS  Google Scholar 

  237. Makowski L, Caspar DLD, Phillips WC et al. (1977) Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74:629–645

    PubMed  CAS  Google Scholar 

  238. Martinez-Palomo A, Meza I, Beaty G et al. (1980) Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 87:736–745

    PubMed  CAS  Google Scholar 

  239. Mayerson HS (1963) The physiological importance of lymph. In: Hamilton WF, Dow P (eds) Handbook of physiology, section 2: circulation, vol II. American Physiological Society, Washington DC, pp 1035–1073

    Google Scholar 

  240. Mazzone RW, Kornblau SM, (1980) Pinocytic vesicles in the endothelium of rapidly frozen rabbit lung. Microvasc Res 21:193–211

    Google Scholar 

  241. McGuire PG, Twietmeyer TA (1983) Morphology of rapidly frozen aortic endothelial cells. Glutaraldehyde fixation increases the number of caveolae. Circ Res 53:424–429

    PubMed  CAS  Google Scholar 

  242. McLean MJ, Sperelakis NY (1977) Electrophysiological recordings from spontaneously contracting reaggregates of cultured vascular smooth muscle cells from chick embyros. Exp Cell Res 104:309–318

    PubMed  CAS  Google Scholar 

  243. Means AR, Dedman JR (1980) Calmodulin - an intracellular calcium receptor. Nature 285:73–77

    PubMed  CAS  Google Scholar 

  244. Meldolesi J, Castiglioni G, Parma R et al. (1978) Ca+ + -dependent disassembly and reassembly of occluding junctions in guinea pig pacreatic acinar cells. Effect of drugs. J Cell Biol 79:156–172

    PubMed  CAS  Google Scholar 

  245. Mello RJ, Brown MS, Goldstein JL et al. (1980) LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell 20:829–837

    PubMed  CAS  Google Scholar 

  246. Michel CC (1979) The investigation of capillary permeability in single vessels. Acta Physiol Scand [Suppl] 463:67–74

    CAS  Google Scholar 

  247. Michel CC (1984) Fluid movement through capillary walls. In: Renkin EM, Michel CC (eds) Handbook of physiology, section 2: the cardiovascular system, vol IV: microcirculation, part 1. American Physiological Society, Bethesda, pp 375–409

    Google Scholar 

  248. Miller FN, Sims DE (1986) Contractile elements in the regulation of macromolecular permeability. Fed Proc 45:84–88

    PubMed  CAS  Google Scholar 

  249. Miller VM, Aarhus LL, Vanhoutte PM (1986) Modulation of endothelium-dependent responses by chronic alterations of blood-flow. Am J Physiol 251:H520–H527

    PubMed  CAS  Google Scholar 

  250. Minick CR, Stemerman MB, Insull W Jr (1977) Effect of regenerated endothelium on lipid accumulation in the arterial wall. Proc Natl Acad Sci USA 74:1724–1728

    PubMed  CAS  Google Scholar 

  251. Moncada S, Gryglewski R, Bunting S et al. (1976) An enzyme isolated from arteries transforms prostaglandin endopeptides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    PubMed  CAS  Google Scholar 

  252. Moncada S, Herman AF, Higgs EA et al. (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall: an explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11:323–344

    PubMed  CAS  Google Scholar 

  253. Moncada S, Vane JR (1979) Arachidonic acid metabolites and the interactions between platelets and bloodvessel walls. N Engl J Med 300:1142–1147

    PubMed  CAS  Google Scholar 

  254. Montesano R (1979) Inhomogenous distribution of filipin-sterol complexes in smooth muscle cell plasma membrane. Nature 280:328–329

    PubMed  CAS  Google Scholar 

  255. Montesano R, Mossaz A, Ryser JE et al. (1984) Leukocyte interleukins induce cultured endothelial cells to produce a highly organized, glycosaminoglycan-rich pericellular matrix. J Cell Biol 99:1706–1715

    PubMed  CAS  Google Scholar 

  256. Mosher DI, Doyle MJ, Jaffe EA (1982) Synthesis and secretion of thrombospondin by cultured human endothelial cells. J Cell Biol 93:343–348

    PubMed  CAS  Google Scholar 

  257. Muir L, Bornstein WP, Ross R (1976) A presumptive subunit of elastic fiber microfilbrils secreted by arterial smooth-muscle cells in culture. Eur J Biochem 64:105–114

    PubMed  CAS  Google Scholar 

  258. Muller WA, Gimbrone MA (1986) Plasmalemmal proteins of cultured vascular endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination. J Cell Biol 103:2389–2402

    PubMed  CAS  Google Scholar 

  259. Murphy RA, Herlhy JT, Megerman J (1974) Forcegenerating capacity and contractile protein content of arterial smooth muscle. J Gen Physiol 64:691–705

    PubMed  CAS  Google Scholar 

  260. Murray JM, Weber A (1974) The cooperative action of muscle proteins. Sci Am 230(2):59–71

    Google Scholar 

  261. Nachman R, Levine R, Jaffe EA (1977) Synthesis of Factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 60:914–921

    PubMed  CAS  Google Scholar 

  262. Nagy Z, Goehlert UG, Wolfe LS et al. (1985) Ca 2+ depletion-induced disconnection of tight junctions in isolated rat brain microvessels. Acta Neuropathol (Berl) 68:48–52

    CAS  Google Scholar 

  263. Nagy Z, Mathieson G, Hüttner I (1979) Blood-brain barrier opening to horseradish peroxidase in acute arterial hypertension. Acta Neuropathol (Berl) 48:45–53

    CAS  Google Scholar 

  264. Nagy Z, Peters H, Hüttner I (1983) Charge-related alterations of the cerebral endothelium. Lab Invest 49:662–671

    PubMed  CAS  Google Scholar 

  265. Nagy Z, Peters H, Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest 50:313–322

    PubMed  CAS  Google Scholar 

  266. Nagy Z, Szabo M, Hüttner I (1985) Blood-brain barrier impairment by low pH buffer perfusion via the internal carotid artery in rat. Acta Neuropathol (Berl) 68:160–163

    CAS  Google Scholar 

  267. Nawroth P, Stern D (1985) An endothelial cell precoagulant pathway. J Cell Biochem 28:253–264

    PubMed  CAS  Google Scholar 

  268. Narayanan S, Sandberg LB, Ross R et al. (1976) The smooth muscle cell. III. Elastin synthesis in arterial smooth muscle cell culture. J Cell Biol 68:411–419

    PubMed  CAS  Google Scholar 

  269. Newman PJ, Kawai Y, Montgomery RR et al. (1986) Synthesis by cultured human umbilical vein endothelial cells of two proteins structurally and immunologically related to platelet membrane glycoproteins IIb and IIIa. J Cell Biol 103:81–86

    PubMed  CAS  Google Scholar 

  270. Olesen S-P, Crone C (1984) Serotonin increases microvascular permeability in the brain. Int J Microcirc Clin Exp. 3:466 (abstract)

    Google Scholar 

  271. Olesen S-P, Crone C (1986) Substances that rapidly augment ionic conductance of endothelium in cerebral venules. Acta Physiol Scand 127:233–241

    PubMed  CAS  Google Scholar 

  272. Olivetti G, Anversa P, Melissari M et al. (1980) Morphometrie study of early postnatal development of the thoracic aorta in the rat. Circ Res 47:417–424

    PubMed  CAS  Google Scholar 

  273. Osborn M, Caselitz J, Weber K (1981) Heterogeneity of intermediate filament expression in vascular smooth muscle: a gradient in desmin positive cells from the rat aortic arch to the level of the arterial iliaca communis. Differentiation 20:196–202

    PubMed  CAS  Google Scholar 

  274. Owens GK, Loeb A, Gordon D et al. (1986) Expression of smooth muscle-specific alpha-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol 102:343–352

    PubMed  CAS  Google Scholar 

  275. Owens GK, Schwartz SM (1982) Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy and hyperplasia. Circ Res 51:280–289

    PubMed  CAS  Google Scholar 

  276. Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:663–649

    Google Scholar 

  277. Palade GE, Simionescu M, Simionescu N (1979) Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand [Suppl] 463:11–32

    CAS  Google Scholar 

  278. Pappas GD (1973) Junctions between cells. Hosp Pract 8:39–46

    Google Scholar 

  279. Pappas GD, Asada Y, Bennett MVL (1971) Morphological correlates of increased coupling resistance at an electrotonic synapse. J Cell Biol 49:173–188

    PubMed  CAS  Google Scholar 

  280. Pappenheimer JR (1953) Passage of molecules through capillary walls. Physiol Rev 33:387–423

    PubMed  CAS  Google Scholar 

  281. Peach MJ, Loeb AL, Singer HA et al. (1984) Endothelium-derived vascular relaxing factor. Hypertension [Suppl 1] 7:I94-I100

    Google Scholar 

  282. Pearse BMF (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259

    PubMed  CAS  Google Scholar 

  283. Pearson JD, Carleton JS, Gordon JL (1980) Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochemistry 190:421–429

    CAS  Google Scholar 

  284. Pearson JD, Gordon JL (1979) Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281:384–386

    PubMed  CAS  Google Scholar 

  285. Pearson TA, Dillman JM, Heptinstall RH (1983) The clonal characteristics of human aortic intima. Comparison with fatty streaks and normal media. Am J Pathol 113:33–40

    PubMed  CAS  Google Scholar 

  286. Pelikan P, Gimbrone MA, Cotran RS (1979) Distribution and movement of anionic cell surface sites in cultured human vascular endothelial cells. Atherosclerosis 32:69–80

    PubMed  CAS  Google Scholar 

  287. Peters K-R, Carley WW, Palade GE (1985) Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101:2233–2238

    PubMed  CAS  Google Scholar 

  288. Pinto Da Silva P (1972) Translational mobility of the membrane intercalated particles of human erythrocyte ghost. pH-dependent, reversible aggregation. J Cell Biol 53:777–787

    Google Scholar 

  289. Pinto Da Silva P, Kachar B (1982) On tight-junction structure. Cell 28:441–450

    Google Scholar 

  290. Postnov YV (1981) Alteration of cell membrane control over intracellular calcium in essential hypertension and in spontaneously hypertensive rats. In: Laragh, JH, Buckler FR, Seldin DW (eds) Frontiers in hypertension research. Springer-Verlag, Berlin Heidelberg New York, pp 91–93

    Google Scholar 

  291. Raugi GJ, Mumby SM, Abbot-Brown D et al. (1982) Thrombospondin: synthesis and secretion by cells in culture. J Cell Biol 95:351–354

    PubMed  CAS  Google Scholar 

  292. Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    PubMed  CAS  Google Scholar 

  293. Reidy MA (1985) Biology of disease. A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53:513–520

    PubMed  CAS  Google Scholar 

  294. Reidy MA, Schwartz SM (1983) Endothelial injury and regeneration. IV. Endotoxin - a non-denuding injury to aortic endothelium. Lab Invest 48:25–34

    PubMed  CAS  Google Scholar 

  295. Renkin EM (1979) Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol Scand [Suppl] 463:81–91

    CAS  Google Scholar 

  296. Rennke HG, Cotran RS, Venkatachalam MA (1975) Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol 67:638–646

    PubMed  CAS  Google Scholar 

  297. Revel JP, Yee AF, Hudspeth AJ (1971) Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci USA 68:2924–2927

    PubMed  CAS  Google Scholar 

  298. Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223

    PubMed  CAS  Google Scholar 

  299. Rhodin JAG (1968) Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 25:452–500

    PubMed  CAS  Google Scholar 

  300. Rhodin JAG (1980) Architecture of the vessel wall. In: Bohr DR, Somlyo AP, Sparks HV (eds) Handbook of physiology, section 2: the cardiovascular system, vol II, vascular smooth muscle. American Physiological Society, Bethesda pp 1–31

    Google Scholar 

  301. Richardson JB, Beaulnes A (1971) The cellular site of action of angiotensin. J Cell Biol 51:419–432

    PubMed  CAS  Google Scholar 

  302. Robinson SM, Hoover RL, Karnovsky MJ (1984) Vesicles (caveolae) number is reduced in cultured endothelial cells prepared for electron microscopy by rapid- freezing. J Cell Biol 99:287 (abstract)

    Google Scholar 

  303. Robinson JM, Okada T, Castellot JJ Jr et al. (1986) Unusual lysosomes in aortic smooth muscle cells: presence in living and rapidly frozen cells. J Cell Biol 102:1615–1622

    PubMed  CAS  Google Scholar 

  304. Rogalski A A, Singer SJ (1985) An integral glycoprotein associated with the membrane attachment sites of actin microfilaments. J Cell Biol 101:785–801

    PubMed  CAS  Google Scholar 

  305. Rogers KA, Kalnins VI (1983) Comparison of cyto- skeleton in aortic endothelial cells in situ and in vitro. Lab Invest 49:650–654

    PubMed  CAS  Google Scholar 

  306. Rose B, Simpson I, Loewenstein WR (1977) Calcium ion produces graded changes in permeability of membrane channels in cell junction. Nature 267:625–627

    PubMed  CAS  Google Scholar 

  307. Rosenblum WI (1986) Aspects of endothelial malfunction and function in cerebral microvessels. Lab Invest 55:252–268

    PubMed  CAS  Google Scholar 

  308. Ross R (1986) The pathogenesis of atherosclerosis - an update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  309. Ross R, Klebanoff SJ (1971) The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol 50:159–171

    PubMed  CAS  Google Scholar 

  310. Rotrosen D Gallin JI (1986) Histamin type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers. J Cell Biol 103:2379–2387

    PubMed  CAS  Google Scholar 

  311. Ryan GB, Hein SJ, Karnovsky MJ (1976) Glomerular permeability to proteins. Effects of hemodynamic factors on the distribution of endogenous immunoglobulin G and exogenous catalase in the rat glomerulus. Lab Invest 34:415–427

    PubMed  CAS  Google Scholar 

  312. Ryan GB, Karnovsky MJ (1976) Distribution of endogenous albumin in the rat glomerulus. Role of hemodynamic factors in glomerular barrier function. Kidney Int 9:36–45

    PubMed  CAS  Google Scholar 

  313. Ryan US (1986) The endothelial surface and responses to injury. Fed Proc. 45:101–108

    PubMed  CAS  Google Scholar 

  314. Ryan US, Ryan JW, Whitaker C et al. (1976) Localisation of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8:125–145

    PubMed  CAS  Google Scholar 

  315. Saez JC, Spray DC, Nairn AC et al. (1986) cAMP increases junctional conductance and stimulates phosphorilation of the 27-kDa principal gap junction polypeptide. Proc Natl Acad Sci USA 83:2473–2477

    PubMed  CAS  Google Scholar 

  316. Sakai LY, Keene, DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    PubMed  CAS  Google Scholar 

  317. Schlingemann RO, Dingjan GM, Emeis JJ et al. (1985) Monoclonal antibody PAL-E Specific for endothelium. Lab Invest 52:71–76

    PubMed  CAS  Google Scholar 

  318. Schliwa M (1981) Proteins associated with cytoplasmic actin. Cell 25:587–590

    PubMed  CAS  Google Scholar 

  319. Schmid E, Osborn M, Rungger-Brandle E et al. (1982) Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp Cell Res 137:329–340

    PubMed  CAS  Google Scholar 

  320. Schneeberger EE, Lynch RD (1984) Tight junctions: their structure, composition and function. Circ Res 55:723–733

    PubMed  CAS  Google Scholar 

  321. Schoenberg CF, Neehham DM (1976) A study of the mechanism of contraction in vertebrate smooth muscle. Biol Rev 51:53–104

    Google Scholar 

  322. Schollmeyer JE, Furcht LT, Goll DE et al. (1976) Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell Motility, vol A. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 361–388

    Google Scholar 

  323. Schollmeyer JE, Goll DE, Robson RM et al. (1973) Localization of alpha-actinin and topomyosin in different muscles. J Cell Biol 59:306 (abstract)

    Google Scholar 

  324. Schubert D, Harris AJ, Devine CE et al. (1974) Characterization of a unique muscle cell line. J Cell Biol 61:398–413

    PubMed  CAS  Google Scholar 

  325. Schwartz CJ, Werthessen NT, Wolf S (1980) Structure and function of the circulation, vol 1. Plenum Press, New York

    Google Scholar 

  326. Schwartz SM, Benditt EP (1972) Studies on aortic intima. I. Structure and permeability of rat thoracic aortic intima. Am J Pathol 66:241–264

    PubMed  CAS  Google Scholar 

  327. Schwartz SM, Benditt EP (1976) Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci USA, 73:651–653

    PubMed  CAS  Google Scholar 

  328. Schwartz SM, Benditt EP (1977) Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res 41:248–255

    PubMed  CAS  Google Scholar 

  329. Schwartz SM, Campbell GR, Campbell JH (1986) Replication of smooth muscle cells in vascular disease. Circ Res 58:427–444

    PubMed  CAS  Google Scholar 

  330. Schwartz SM, Gajdusek CM, Reidy MA et al. (1980) Maintenance of integrity in aortic endothelium. Fed Proc 39:2618–2625

    PubMed  CAS  Google Scholar 

  331. Schwartz SM, Gajdusek CM, Seiden SC III (1981) Vascular wall growth control: The role of the endothelium. Arteriosclerosis 1:107–126

    PubMed  Google Scholar 

  332. Schwartz SM, Haudenschild CC, Eddy EM (1978) Endothelial regeneration I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima. Lab Invest 38:568–580

    PubMed  CAS  Google Scholar 

  333. Schwartz SM, Stemerman MB, Benditt EP (1975) The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol 81:15–42

    PubMed  CAS  Google Scholar 

  334. Scow RO, Blanchette-Mackie EJ, Smith LC (1976) Role of capillary endothelium in the clearance of chylomicrons: a model for lipid transport from blood by lateral diffusion in cell membranes. Circ Res 39:149–162

    PubMed  CAS  Google Scholar 

  335. Segall SS, Duling BR (1986) Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870

    Google Scholar 

  336. Seifert RA, Schwartz SM, Bowen-Pope DF (1984) Developmentally regulated production of platelet- derived growth factor-like molecules. Nature 311:669–671

    PubMed  CAS  Google Scholar 

  337. Severs NJ, Simons HL (1983) Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Nature 303:637–638

    PubMed  CAS  Google Scholar 

  338. Severs NJ, Simons HL (1986) Caveolar bands and the effects of sterol-binding agents in vascular smooth muscle plasma membrane. Single and double labeling with filipin and tomatin in the aorta pulmonary artery, and vena cava. Lab Invest 55:295–307

    PubMed  CAS  Google Scholar 

  339. Shasby DM, Lind SE, Shasby SS et al. (1985) Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood 65:605–614

    PubMed  CAS  Google Scholar 

  340. Shasby DM, Shasby SS, Sullivan JM et al. (1982) Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 51:657–661

    PubMed  CAS  Google Scholar 

  341. Shepro D, D’Amore PA (1984) Physiology and biochemistry of the vascular wall endothelium. In: Renkin EM, Michel CC (eds) Handbook of physiology, section 2: the cardiovascular system, vol IV: microcirculation, part 1. American Physiological Society, Bethesda, pp 103–164

    Google Scholar 

  342. Shepro D, Hechtman HB (1985) Endothelial serotonin uptake and mediation of prostanoid secretion and stress fiber formation. Fed Proc 44:2616–2619

    PubMed  CAS  Google Scholar 

  343. Sheridan JP, Larson DM (1982) Junctional communication in the peripheral vasculature. In: Pitts JD, Finbow ME: The functional integration of cells in animal tissues. Cambridge University Press, Cambridge pp 263–283

    Google Scholar 

  344. Simionescu M, Simionescu N, Palade GE (1974) Morphometric data on the endothelium of blood capillaries. J Cell Biol 60:128–152

    PubMed  CAS  Google Scholar 

  345. Simionescu M, Simionescu N, Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium: the microvasculature. J. Cell Biol 67:863–885

    PubMed  CAS  Google Scholar 

  346. Simionescu M, Simionescu N, Palade GE (1976) Segmental differentiations of cell junctions in the vascular endothelium: arteries and veins. J Cell Biol 68:705–723

    PubMed  CAS  Google Scholar 

  347. Simionescu M, Simionescu N, Palade GE (1982) Differential microdomains on the luminal surface of capillary endothelium. Distribution of lectin receptors. J Cell Biol 94:406–413

    PubMed  CAS  Google Scholar 

  348. Simionescu M, Simionescu N, Santoro F et al. (1985) Differentiated microdomains of the luminal plasmalemma of murine muscle capillaries: segmental variations in young and old animals. J Cell Biol 100:1396–1407

    PubMed  CAS  Google Scholar 

  349. Simionescu N (1983) Cellular aspects of transcapillary exchange. Physiol Rev 63:1536–1577

    PubMed  CAS  Google Scholar 

  350. Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small hemipeptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    PubMed  CAS  Google Scholar 

  351. Simionescu N, Simionescu M, Palade GE (1978) Open junctions in the endothelium of the postcapillary venules of the diaphragm. J Cell Biol 79:27–44

    PubMed  CAS  Google Scholar 

  352. Simpson I, Rose B, Loewenstein WR (1977) Size limit of molecules permeating the junctional membrane channels. Science 195:294–296

    PubMed  CAS  Google Scholar 

  353. Singer II (1979) The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16:675–685

    PubMed  CAS  Google Scholar 

  354. Singer II (1982) Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts. J Cell Biol 92:398–408

    PubMed  CAS  Google Scholar 

  355. Singer II, Kazazis DM, Kawka DW (1985) Localization of the fibronexus at the surface of granulation tissue myofibroblasts using double-label immunogold electron microscopy on ultrathin frozen sections. Eur J Cell Biol 38:94–101

    PubMed  CAS  Google Scholar 

  356. Singer II, Kawka DW, Kazazis DM et al. (1984) In vivo codistribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface. J Cell Biol 98:2091–2106

    PubMed  CAS  Google Scholar 

  357. Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  358. Skalli O, Ropraz P, Trzeciak A et al. (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    PubMed  CAS  Google Scholar 

  359. Small JV, Furst DO, De Mey J (1986) Localization of filamin in smooth muscle. J Cell Biol 102:210–220

    PubMed  CAS  Google Scholar 

  360. Somlyo AP (1983) Excitation-contraction coupling and the ultrastructure of smooth muscle. Circ Res 57:497–507

    Google Scholar 

  361. Somlyo AP, Somlyo AV, Shuman H et al. (1978) Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles. Ann NY Acad Sci 307:523–544

    PubMed  CAS  Google Scholar 

  362. Somlyo AP, Somlyo AV, Shuman H (1979) Electron probe analysis of vascular smooth muscle: composition of mitochondria, muscles and cytoplasm. J Cell Biol 81:316–335

    PubMed  CAS  Google Scholar 

  363. Somlyo AV (1980) Ultrastructure of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV (eds): Handbook of physiology, section 2: the cardiovascular system, vol II: vascular smooth muscle. American Physiological Society, Bethesda, pp 33–67

    Google Scholar 

  364. Somlyo AV, Gonzalez-Serratos H, Shuman H et al. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study. J Cell Biol 90:577–594

    PubMed  CAS  Google Scholar 

  365. Spagnoli LG, Pietra GG, Villaschi S et al. Morphometric analysis of gap junctions in regenerating arterial endothelium. Lab Invest 46:139–148

    Google Scholar 

  366. Spagnoli LG, Villaschi S, Neri L et al. (1982) Gap junction in myo-endothelial bridges of rabbit carotid arteries. Experientia 38:124–125

    PubMed  CAS  Google Scholar 

  367. Sprague EA, Kelley JL, Suenram CA et al. (1985) Stimulation of albumin endocytosis by cationized ferritin in cultured aortic smooth muscle cells. Am J Pathol 121:443–443

    Google Scholar 

  368. Squire J (1981) The structural basis of muscular contraction. Plenum Press, New York

    Google Scholar 

  369. Staehelin LA, Hull BE (1978) Junctions between living cells. Sci Am 238:141–152

    Google Scholar 

  370. Steer CJ, Bisher M, Blumenthal R et al. (1984) Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat. J Cell Biol 99:315–319

    PubMed  CAS  Google Scholar 

  371. Stein O, Stein Y (1972) An electron microscopic study of transport of peroxidases in the endothelium of mouse aorta. Z Zellforsch Mikrosk Anat 133:211–222

    PubMed  CAS  Google Scholar 

  372. Stein O, Stein Y (1980) Bovine aortic endothelial cells display macrophage-like properties toward acetylated (125I)-labelled low density lipoprotein. Biochim Biophys Acta 620:631–635

    PubMed  CAS  Google Scholar 

  373. Stemerman MB (1974) Vascular intimai components: Precursors of thrombosis. Prog Hemost Thromb 2:1–47

    PubMed  CAS  Google Scholar 

  374. Stevenson BR, Siliciano JD, Mooseker MS et al. (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766

    PubMed  CAS  Google Scholar 

  375. Svensjö E, Grega GJ (1986) Evidence for endothelial cell-mediated regulation of macromolecular permeability by postcapillary venules. Fed Proc 45:89–95

    PubMed  Google Scholar 

  376. Talmon A, Cohen E, Bacher A et al. (1984) Separation of induction and expression of tight junction formation mediated by proteases. Biochim Biophys Act a 769:505–507

    CAS  Google Scholar 

  377. Taugner R, Kirchheim H, Forssmann WG (1984) Myoendothelial contacts in glomerular arterioles and in renal interlobular arteries of rat, mouse and Tupaia belangeri. Cell Tissue Res 235:319–325

    PubMed  CAS  Google Scholar 

  378. Taylor KA, Amos LA (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments. J Mol Biol 147:297–324

    PubMed  CAS  Google Scholar 

  379. Thoma R (1921) Über die intima des arterien. Virchows Arch [A] 230:1–45

    Google Scholar 

  380. Thorgeirsson G, Robertson AL (1978) The vascular endothelium - pathobiologic significance. A review. Am J Pathol 93:803–848

    PubMed  CAS  Google Scholar 

  381. Thyberg J, Nilsson J, Palmberg L et al. (1985) Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res 239:69–74

    PubMed  CAS  Google Scholar 

  382. Timpl R, Rhode H, Gehron-Robey P et al. (1979) Laminin - a glycoprotein from basement membrane. J Biol Chem 254:9933–9937

    PubMed  CAS  Google Scholar 

  383. Trout JJ, Koenig H, Goldstone AD et al. (1986) Blood- brain barrier breakdown by cold injury. Polyamine signals mediate acute stimulation of endocytosis, vesicular transport and microvillus formation in rat cerebral capillaries. Lab Invest 55:622–631

    PubMed  CAS  Google Scholar 

  384. Turner MR, Clough G, Michel CC (1983) The effects of cationized ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microcirc Res 25:205–222

    CAS  Google Scholar 

  385. Unwin PNT, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283:545–549

    PubMed  CAS  Google Scholar 

  386. Van Breemen C, Cauvin C, Johns A et al. (1986) Ca2+ regulation of vascular smoooth muscle. Fed Proc 45:2746–2751.

    PubMed  Google Scholar 

  387. Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133

    PubMed  CAS  Google Scholar 

  388. Van de Vorde J, Leuen I (1983) Role of endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur J Pharmacol 87:113–120

    Google Scholar 

  389. Vanhoutte PM (1978) Heterogeneity in vascular smooth muscle. In: Kaley G, Altura BM (eds) Microcirculation vol II. University Park Press, Baltimore, pp 181–309

    Google Scholar 

  390. Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding, endocytosis, and transcytosis of low density lipoprotein in the arterial endothelium in situ. J Cell Biol 96:1677–1689

    PubMed  CAS  Google Scholar 

  391. Venkatachalam MA, Rennke HG (1978) The structural and molecular basis of glomerular filtration. Circ Res 43:337–347

    PubMed  CAS  Google Scholar 

  392. Verselis V, White RL, Spray DC et al. (1986) Gap junctional conductance and permeability are linearly related. Science 234:461–464

    PubMed  CAS  Google Scholar 

  393. Vlodavsky I, Gospodarowicz D (1979) Structural and functional alterations in the surface of vascular endothelial cells associated with the formation of a confluent cell monolayer and with the withdrawal of fibroblast growth factor. J Supramol Struct 12:73–114

    PubMed  CAS  Google Scholar 

  394. Volk T, Geiger B (1986) A-CAM: a 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol 103:1441–1450

    PubMed  CAS  Google Scholar 

  395. Volk T, Geiger B (1986) A-CAM: a 134-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J Cell Biol 103:1451–1464

    PubMed  CAS  Google Scholar 

  396. Voyta JC, Via DP, Butterfield CE et al. (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein. J Cell Biol 99:2034–2040

    PubMed  CAS  Google Scholar 

  397. Wade JB, Karnovsky MJ (1974) The structure of the zonula occludens. A single fibril model based on freeze- fracture. J Cell Biol 60:168–180

    PubMed  CAS  Google Scholar 

  398. Wagner DD, Marder VJ (1984) Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 99:2123–2130

    PubMed  CAS  Google Scholar 

  399. Wagner DD, Mayadas T, Marder VJ (1986) Initial glycosylation and acidic pH in the golgi apparatus are required for multimerization of von Willebrand factor. J Cell Biol 102:1320–1324

    PubMed  CAS  Google Scholar 

  400. Wagner DD, Olmstead JB, Marder VJ (1982) Immunolocalization of von Willebrand protein in Weibel- Palade bodies of human endothelial cells. J Cell Biol 95:355–360

    PubMed  CAS  Google Scholar 

  401. Wagner RC, Andrew SB (1985) Utrastructure of the vesicular system in rapidly frozen capillary endothelium of the rete mirabile. J Ultrastruct Res 90:172–182

    Google Scholar 

  402. Wagner RC, Robinson CS (1982) Tannic acid tracer analysis of permeability pathways in the capillaries of the rete mirabile: demonstration of the discreteness of endothelial vesicles. J Ultrastruct Res 81:37–46

    PubMed  CAS  Google Scholar 

  403. Wagner RC, Robinson CS (1984) High-voltage electron microscopy of capillary endothelial vesicles. Microvasc Res 28:197–205

    PubMed  CAS  Google Scholar 

  404. Walker LN, Bowen-Pope DF, Ross R et al. (1986) Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci USA (1986) 83:7311–7315

    CAS  Google Scholar 

  405. Warren HB, Collins T, Davies PF (1986) C-sis RNA expressed by cholesterol loaded bovine aortic endothelial cells. Fed Proc 45:1073 (abstract)

    Google Scholar 

  406. Wang K, Ash JF, Singer SJ (1975) Filamin, a new high- molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci USA 72:4483–4486

    PubMed  CAS  Google Scholar 

  407. Warhol MJ, Sweet JM (1984) The ultrastructural localization of von Willebrand factor in endothelial cells. Am J Pathol 117:310–315

    PubMed  CAS  Google Scholar 

  408. Weeds A (1982) Actin-binding proteins - regulators of cell architecture and motility. Nature 296:811–816

    PubMed  CAS  Google Scholar 

  409. Wei EP, Ellison MD, Kontos HA et al. (1986) O2 radicals in arachidonate-induced increased blood- brain barrier permeability to proteins. Am J Physiol 251:H693-H699

    PubMed  CAS  Google Scholar 

  410. White GE, Fujiwara K (1986) Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 103:63–70

    PubMed  CAS  Google Scholar 

  411. White GE, Gimbrone MA Jr, Fujiwara K (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J Cell Biol 97:416–424

    PubMed  CAS  Google Scholar 

  412. Williams LT, Tremble P, Antoniades HN (1982) Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable. Proc Natl Acad Sci USA 79:5867–5870

    PubMed  CAS  Google Scholar 

  413. Williams SK, Devemy JJ, Bittensky MW (1981) Micro- pinocytotic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci USA 78:2393–2397

    PubMed  CAS  Google Scholar 

  414. Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20:99–101

    PubMed  CAS  Google Scholar 

  415. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 29:867–869

    Google Scholar 

  416. Wysolmerski R, Lagunoff D (1985) The effect of eth- chlorvynol on cultured endothelial cells. A model for the study of the mechanism of increased vascular permeability. Am J Pathol 119:505–512

    PubMed  CAS  Google Scholar 

  417. Yamada KM (1983) Cell surface interactions with extracellular materials. Ann Rev Biochem 52:761–799

    PubMed  CAS  Google Scholar 

  418. Yokota S (1983) Immunocytochemical evidence for transendothelial transport of albumin and fibrinogen in rat heart and diaphragm. Biomed Res 4:577–586

    CAS  Google Scholar 

  419. Zetter BR (1981) The endothelial cells of large and small blood vessels. Diabetes 30 [Suppl] 2:24–28

    PubMed  CAS  Google Scholar 

  420. Zand T, Underwood JM, Nunnari JJ et al. (1982) Endothelium and “silver lines”. An electron microscopic study. Virchows Arch [A] 395:133–144

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hüttner, I., Kocher, O., Gabbiani, G. (1989). Endothelial and Smooth-Muscle Cells. In: Camilleri, JP., Berry, C.L., Fiessinger, JN., Bariéty, J. (eds) Diseases of the Arterial Wall. Springer, London. https://doi.org/10.1007/978-1-4471-1464-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1464-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1466-6

  • Online ISBN: 978-1-4471-1464-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics