Skip to main content

Local Fractional Calculus: a Calculus for Fractal Space-Time

  • Conference paper
Fractals

Abstract

Recently, new notions such as local fractional derivatives and local fractional differential equations were introduced. Here we argue that these developments provide a possible calculus to deal with phenomena in fractal space-time. We show how the usual calculus is generalized to deal with non Lipschitz functions. We also indicate how a definition of a fractal measure arises from these developments much the same way as the Lebesgue measure from ordinary calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B. Mandelbrot (1977): The Fractal Geometry of Nature. Freeman, New York.

    Google Scholar 

  2. A. Bunde and S. Havlin, Eds (1995): Fractals in science. Springer.

    Google Scholar 

  3. S. Baldo, F. Normant and C. Tricot, Eds. (1994): Fractals in Engineering. World Scientific, Singapore.

    MATH  Google Scholar 

  4. J. Lévy-vehel, E. Lutton and C. Tricot, Eds. (1997): Fractals in Engineering. Springer.

    MATH  Google Scholar 

  5. A.-L. Barabási and H. E. Stanley (1995): Fractal concepts in surface growth. Cambridge University Press.

    Book  MATH  Google Scholar 

  6. T. Vicsek (1989):Fractal growth phenomenon. World Scientific.

    Google Scholar 

  7. H. Peitgen, H. Jurgens and D. Saupe (1992): Chaos and fractals: New frontiers of science. Springer, New York.

    Google Scholar 

  8. L. Nottale (1996): Chaos, Solitons & Fractals. 7, 877.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Falconer (1990): Fractal Geometry. John Wiley, New York.

    MATH  Google Scholar 

  10. C. Tricot (1993): Curves and fractal dimension. Springer, New York.

    MATH  Google Scholar 

  11. J. L. Kaplan, J. Malet-Peret and J. A. Yorke (1994). Ergodic Th. and Dyn. Syst. 4, 261.

    Google Scholar 

  12. R. P. Feynmann and A. R. Hibbs (1965): Quantum Mechanics and Path Integrals. McGraw-Hill, New York.

    Google Scholar 

  13. P. Constantin, I. Procaccia and K. R. Sreenivasan (1991). Phys. Rev. Lett. 67, 1739.

    Article  Google Scholar 

  14. P. Constantin and I. Procaccia (1994). Nonlinearity 7, 1045.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. F. Abott and M. B. Wise (1981): Am. J. Phys. 49, 37.

    Article  Google Scholar 

  16. K. M. Kolwankar (1997). Ph. D. thesis, University of Pune.

    Google Scholar 

  17. K. S. Miller and B. Ross (1993): An Introduction to the Fractional. Calculus and Fractional Differential Equations. John Wiley, New York.

    Google Scholar 

  18. K. B. Oldham and J. Spanier (1974): The Fractional Calculus. Academic Press, New York.

    MATH  Google Scholar 

  19. S. G. Samko, A. A. Kilbas and O. I. Marichev (1993): Fractional integrals and derivatives, theory and applications. Gordon & Breach.

    MATH  Google Scholar 

  20. A. Carpinteri and F. Mainardi, eds. (1997): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York.

    MATH  Google Scholar 

  21. R. Hilfer, ed. (1998): Applications of Fractional Calculus in Physics. World Scientific, Singapore.

    Google Scholar 

  22. T. J. Osier (1971). SIAM J. Math. Anal. 2, 37–48.

    Article  MathSciNet  Google Scholar 

  23. M. Caputo and F. Mainardi (1971). Pure Appl. Geophys., 91, 134–147.

    Article  Google Scholar 

  24. Nigmatullin R. (1986). Phys. Stat. Sol. B133, 425–430.

    Google Scholar 

  25. T. F. Nonnenmacher and G. W. Glockle (1991). Phil. Mag. Lett. B64, 89–93.

    Article  Google Scholar 

  26. H. Schiessel and A. Blumen (1993). J. Phys. A: Math. Gen. 26, 5057–5069.

    Article  Google Scholar 

  27. F. Mainardi (1996). Chaos, Solitons and Fractals 7, 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Compte and M. O. Cáceres (1998). Phys. Rev. Lett, 81, 3140–3143.

    Article  Google Scholar 

  29. M. Giona and H. E. Roman (1992). J. Phys. A: Math Gen. 25, 2093.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. E. Roman and M. Giona (1992). J. Phys. A: Math. Gen. 25, 2107.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. M. Zaslavsky (1994). Physica D 76, 110.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. M. Zaslavsky (1994). Chaos, 4, 25.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. F. Nonnenmacher (1990). J. Phys. A: Math. gen. 23, L697-L700.

    Article  MathSciNet  Google Scholar 

  34. J. P. Bouchaud and A. Georges (1990). Phys. Rep. 195, 127.

    Article  MathSciNet  Google Scholar 

  35. B. Souillard (1993). In Chance and Matter edited by J. Souletie, J. Vannimenusans R. Stora, North Holland, Amsterdam.

    Google Scholar 

  36. K. Sarkar and C. Meneveau (1993). Phys. Rev. E 47 957.

    Article  Google Scholar 

  37. B. B. Mandelbrot and J. W. Van Ness (1968). SIAM Rev. 10, 422.

    Article  MathSciNet  MATH  Google Scholar 

  38. K. L. Sebastian (1995). J. Phys. A28, 4305.

    MathSciNet  MATH  Google Scholar 

  39. K. M. Kolwankar and A. D. Gangal (1996). Chaos 6, 505.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Risken (1984): The Fokker-Planck Equation. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  41. W. Feller (1968): An Introduction to Probability Theory and its Applications. Wiley, New York, Vol 2.

    MATH  Google Scholar 

  42. K. M. Kolwankar and A. D. Gangal (1998). Phys. Rev. Lett. 80 214.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. M. Kolwankar and A. D. Gangal. Unpublished.

    Google Scholar 

  44. K. M. Kolwankar and A. D. Gangal (1997). Pramana-J. Phys. 48, 49.

    Article  Google Scholar 

  45. K. M. Kolwankar and A. D. Gangal (1997). In proceedings of ‘Fractals in Engineering’, Arcachon, France.

    Google Scholar 

  46. R. Courant and F. John (1965): Introduction to calculus and analysis. John Wiley, Vol 1.

    MATH  Google Scholar 

  47. H. L. Royden, Real Analysis 3e (Macmillan, New York, 1988).

    Google Scholar 

  48. K. J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  49. P. R. Haimos, Measure Theory (Springer, New York, 1986).

    Google Scholar 

  50. Feder J., Fractals, Pergamon, 1988

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Kolwankar, K.M., Gangal, A.D. (1999). Local Fractional Calculus: a Calculus for Fractal Space-Time. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds) Fractals. Springer, London. https://doi.org/10.1007/978-1-4471-0873-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0873-3_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1225-9

  • Online ISBN: 978-1-4471-0873-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics