Skip to main content

Abstract

One of the fundamental requirements for the success of a manipulation task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator’s end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object. In this chapter, performance of operational space motion control schemes is studied first. The concepts of mechanical compliance and impedance are defined, with special regard to the problem of integrating contact force measurements into the control strategy. Then, force control schemes are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. For the planning of control actions to perform an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established; the constraints are expressed in a suitable constraint frame. The formulation is conveniently exploited to derive a hybrid force/position control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson R.J., Spong M.W. (1988) Hybrid impedance control of robotic manipulators. IEEE J. Robotics and Automation. 4:549–556.

    Article  Google Scholar 

  • Chiaverini S. (1990) Controllo in Forza di Manipolatori (in Italian). Tesi di Dottorato di Ricerca, Università degli Studi di Napoli Federico II.

    Google Scholar 

  • Chiaverini S., Sciavicco L. (1993) The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robotics and Automation. 4:361–373.

    Article  Google Scholar 

  • Chiaverini S., Siciliano B., Villani L. (1994) Force/position regulation of compliant robot manipulators. IEEE Trans. Automatic Control. 39:647–652.

    Article  MATH  Google Scholar 

  • De Luca A., Manes C, Nicolò F. (1988) A task space decoupling approach to hybrid control of manipulators. In Proc. 2nd IFAC Symp. Robot Control. Karlsruhe, Germany, pp. 157–162.

    Google Scholar 

  • De Schutter J., Van Brussel H. (1988) Compliant robot motion I. A formalism for specifying compliant motion tasks. Int. J. Robotics Research. 7(4):3–17.

    Article  Google Scholar 

  • De Schlatter J., Van Brussel H. (1988) Compliant robot motion II. A control approach based on external control loops. Int. J. Robotics Research. 7(4): 18–33.

    Article  Google Scholar 

  • Eppinger S.D., Seering W.P. (1987) Introduction to dynamic models for robot force control. IEEE Control Systems Mag. 7(2):48–52.

    Article  Google Scholar 

  • Goldenberg A.A. (1988) Implementation of force and impedance control in robot manipulators. In Proc. 1988 IEEE Int. Conf. Robotics and Automation Philadelphia, Penn., pp. 1626–1632.

    Google Scholar 

  • Hogan N. (1985) Impedance control: An approach to manipulation: Part I—Theory. ASME J. Dynamic Systems, Measurement, and Control. 107:1–7.

    Article  MATH  Google Scholar 

  • Hogan N. (1985) Impedance control: An approach to manipulation: Part II—Implementation. ASME J. Dynamic Systems, Measurement, and Control. 107:8–16.

    Article  MATH  Google Scholar 

  • Kazerooni H., Houpt P.K., Sheridan T.B. (1986) Robust compliant motion of manipulators, part I: The fundamental concepts of compliant motion. IEEE J. Robotics and Automation. 2:83–96.

    Google Scholar 

  • Khatib O. (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robotics and Automation. 3:43–53.

    Article  Google Scholar 

  • Lozano-Pérez T., Mason M.T., Taylor R.H. (1984) Automatic synthesis of fine-motion strategies for robots. Int. J. Robotics Research. 3(1):3–24.

    Article  Google Scholar 

  • Mason M.T. (1981) Compliance and force control for computer controlled manipulators. IEEE Trans. Systems, Man, and Cybernetics. 6:418–432.

    Article  Google Scholar 

  • Paul, R.P. (1981) Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Paul R.P., Shimano B. (1976) Compliance and control. In Proc. 1976. Joint Automatic Control Conf. San Francisco, Cal., pp. 694–699.

    Google Scholar 

  • Raibert M.H., Craig J.J. (1981) Hybrid position/force control of manipulators. ASME J. Dynamic Systems, Measurement, and Control. 103:126–133.

    Article  Google Scholar 

  • Salisbury J.K. (1980) Active stiffness control of a manipulator in Cartesian coordinates. In Proc. 19th IEEE Conf. Decision and Control. Albuquerque, New Mex., pp. 95–100.

    Google Scholar 

  • Siciliano B., Villani L. (1999) Robot Force Control. Kluwer Academic Publishers, Boston, Mass.

    Google Scholar 

  • Volpe R., Khosla P. (1993) A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Trans, on Automatic Control. 38:1634–1650.

    Article  MathSciNet  Google Scholar 

  • Whitney D.E. (1977) Force feedback control of manipulator fine motions. ASME J. Dynamic Systems, Measurement, and Control. 99:91–97.

    Article  Google Scholar 

  • Whitney D.E. (1982) Quasi-static assembly of compliantly supported rigid parts. ASME J. Dynamic Systems, Measurement, and Control. 104:65–77.

    Article  MATH  Google Scholar 

  • Whitney D.E. (1987) Historical perspective and state of the art in robot force control. Int. J. Robotics Research. 6(1):3–14.

    Article  Google Scholar 

  • Yoshikawa T. (1987) Dynamic hybrid position/force control of robot manipulators Description of hand constraints and calculation of joint driving force. IEEE J. Robotics and Automation. 3:386–392.

    Article  Google Scholar 

  • Yoshikawa T. (1990) Foundations of Robotics. MIT Press, Cambridge, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Sciavicco, L., Siciliano, B. (2000). Interaction Control. In: Modelling and Control of Robot Manipulators. Advanced Textbooks in Control and Signal Processing. Springer, London. https://doi.org/10.1007/978-1-4471-0449-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0449-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-221-1

  • Online ISBN: 978-1-4471-0449-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics