Skip to main content

Kainate Receptors with a Metabotropic Signature Enhance Hippocampal Excitability by Regulating the Slow After-Hyperpolarization in CA3 Pyramidal Neurons

  • Chapter
Kainate Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 717))

Abstract

Most of our knowledge of the synaptic function of kainate receptors stems from a detailed analysis of synaptic transmission between dentate granule cells and CA3 pyramidal neurons, where kainate receptors mediate a slow excitatory current with integrative properties ideally suited for repetitive neuronal firing. Besides this well characterized ionotropic effect of kainate receptors, they can also enhance neuronal excitability by inhibiting the slow Ca2+ activated K+ current IsAHP via a G-protein coupled mechanism. This phenomenon is associated with Ca2+ mobilization and protein-kinase activation and ultimately leads to modulation of ion channels responsible for intrinsic electrical properties such as firing adaptation. The significance for CNS function of these newly emerging metabotropic kainate receptors is poorly understood and as yet proteomic analysis of kainate receptors has yielded little information on signaling molecules associated with the kainate receptor ionophore. This chapter covers the key findings that have led to the proposal that high-affinity postsynaptic kainate receptors trigger a form of metabotropic signaling regulating IsAH P and neuronal firing in CA3 hippocampal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal SG, Evans RH. The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol 1986; 87:345–355.

    PubMed  CAS  Google Scholar 

  2. Bleakman D, Ballyk BA, Schoepp DD et al. Activity of 2, 3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 1996; 35:1689–1702.

    Article  PubMed  CAS  Google Scholar 

  3. Engberg I, Tarnawa I, Durand J et al. An analysis of synaptic transmission to motoneurones in the cat spinal cord using a new selective receptor blocker. Acta Physiol Scand 1993; 148:97–100.

    Article  PubMed  CAS  Google Scholar 

  4. Ruiz A, Durand J. Modulation of kainate-induced responses by pentobarbitone and GYKI-53784 in rat abducens motoneurons in vivo. Brain Res 1999; 818:421–430.

    Article  PubMed  CAS  Google Scholar 

  5. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997; 388:182–186.

    Article  PubMed  CAS  Google Scholar 

  6. Cossart R, Esclapez M, Hirsch JC et al. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1998; 1:470–478.

    Article  PubMed  CAS  Google Scholar 

  7. DeVries SH, Schwartz EA. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 1999; 397:157–160.

    Article  PubMed  CAS  Google Scholar 

  8. Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci 1998; 1:479–486.

    Article  PubMed  CAS  Google Scholar 

  9. Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 1999; 400:569–573.

    Article  PubMed  CAS  Google Scholar 

  10. Li P, Wilding TJ, Kim SJ et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 1999; 397:161–164.

    Article  PubMed  CAS  Google Scholar 

  11. Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997; 388:179–182.

    Article  PubMed  CAS  Google Scholar 

  12. Sachidhanandam S, Blanchet C, Jeantet Y et al. Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J Neurosci 2009; 29:5000–5008.

    Article  PubMed  CAS  Google Scholar 

  13. Barberis A, Sachidhanandam S, Mulle C. GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci 2008; 28:6402–6406.

    Article  PubMed  CAS  Google Scholar 

  14. Perrais D, Coussen F, Mulle C. Atypical functional properties of GluK3-containing kainate receptors. J Neurosci 2009; 29:15499–15510.

    Article  PubMed  CAS  Google Scholar 

  15. Chittajallu R, Vignes M, Dev KK et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 1996; 379:78–81.

    Article  PubMed  CAS  Google Scholar 

  16. Clarke VR, Ballyk BA, Hoo KH et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 1997; 389:599–603.

    Article  PubMed  CAS  Google Scholar 

  17. Contractor A, Swanson GT, Sailer A et al. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic trnsmission in the CA3 region of the hippocampus. J Neurosci 2000; 20:8269–8278.

    PubMed  CAS  Google Scholar 

  18. Kamiya H, Ozawa S. Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J Physiol (Lond) 2000; 523 Pt 3:653–665.

    Article  CAS  Google Scholar 

  19. Kidd FL, Coumis U, Collingridge GL et al. A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 2002; 34:635–646.

    Article  PubMed  CAS  Google Scholar 

  20. Lauri SE, Delany C, VR JC et al. Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. Neuropharmacology 2001; 41:907–915.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynapticalfy downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 19:893–901.

    Article  PubMed  CAS  Google Scholar 

  22. Schmitz D, Frerking M, Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 2000; 27:327–338.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz D, Mellor J, Nicoll RA. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 2001; 291:1972–1976.

    Article  PubMed  CAS  Google Scholar 

  24. Fisahn A, Heinemann SF, McBain CJ. The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 2005; 562(Pt l):199–203.

    Article  PubMed  CAS  Google Scholar 

  25. Melyan Z, Lancaster B, Wheal HV Metabotropic Regulation of Intrinsic Excitability by Synaptic Activation of Kainate Receptors. The Journal of Neuroscience 2004; 24:4530–4534.

    Article  PubMed  CAS  Google Scholar 

  26. Melyan Z, Wheal HV, Lancaster B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 2002; 34:107–114.

    Article  PubMed  CAS  Google Scholar 

  27. Grabauskas G, Lancaster B, O’Connor V et al. Protein kinase signalling requirements for metabotropic action of kainate receptors in rat CA1 pyramidal neurones. J Physiol 2007; 579(Pt 2):363–373.

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz A, Sachidhanandam S, Utvik JK et al. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J Neurosci 2005; 25:11710–11718.

    Article  PubMed  CAS  Google Scholar 

  29. Bowie D. Ion-dependent gating of kainate receptors. J Physiol 2010; 588(Pt 1):67–81.

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez-Moreno A, Sihra TS. Kainate receptors with a metabotropic modus operandi. Trends Neurosci 2007; 30:630–637.

    Article  PubMed  CAS  Google Scholar 

  31. Coussen F, Mulle C. Kainate receptor-interacting proteins and membrane trafficking. Biochem Soc Trans 2006; 34(Pt 5):927–930.

    Article  PubMed  CAS  Google Scholar 

  32. Alt A, Weiss B, Ogden AM et al. Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 2004; 46:793–806.

    Article  PubMed  CAS  Google Scholar 

  33. Jatzke C, Watanabe J, Wollmuth LP. Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol 2002; 538(Pt l):25–39.

    Article  PubMed  CAS  Google Scholar 

  34. Paternain AV, Rodriguez-Moreno A, Villarroel A et al. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 1998; 37(10-11):1249–1259.

    Article  PubMed  CAS  Google Scholar 

  35. Wenthold RJ, Trumpy VA, Zhu WS et al. Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies. J Biol Chem 1994; 269:1332–1339.

    PubMed  CAS  Google Scholar 

  36. Wisden W, Seeburg PH. A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 1993; 13:3582–3598.

    PubMed  CAS  Google Scholar 

  37. Werner P, Voigt M, Keinanen K et al. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 1991; 351:742–744.

    Article  PubMed  CAS  Google Scholar 

  38. Pinheiro PS, Perrais D, Coussen F et al. GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 2007; 104:12181–12186.

    Article  PubMed  CAS  Google Scholar 

  39. Lerma J, Paternain AV, Naranjo JR et al. Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 1993; 90:11688–11692.

    Article  PubMed  CAS  Google Scholar 

  40. Perrais D, Pinheiro PS, Jane DE et al. Antagonism of recombinant and native GluK3-containing kainate receptors. Neuropharmacology 2009; 56:131–140.

    Article  PubMed  CAS  Google Scholar 

  41. Herb A, Higuchi M, Sprengel R et al. Q/R site editing in kainate receptor GluR5 and GluR6 premRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 1996; 93:1875–1880.

    Article  PubMed  CAS  Google Scholar 

  42. Marchai C, Mulle C. Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 2004; 561(Pt l):27–37.

    Article  Google Scholar 

  43. Mulle C, Sailer A, Perez-Otano I et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998; 392:601–605.

    Article  PubMed  CAS  Google Scholar 

  44. Contractor A, Sailer AW, Darstein M et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/-mice. J Neurosci 2003; 23:422–429.

    PubMed  CAS  Google Scholar 

  45. Fernandes HB, Catches JS, Petralia RS et al. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling. Neuron 2009; 63:818–829.

    Article  PubMed  CAS  Google Scholar 

  46. Darstein M, Petralia RS, Swanson GT et al. Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J Neurosci 2003; 23:8013–8019.

    PubMed  CAS  Google Scholar 

  47. Bureau I, Bischoff S, Heinemann SF et al. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 1999; 19:653–663.

    PubMed  CAS  Google Scholar 

  48. Petralia RS, Wang YX, Wenthold RJ. Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J Comp Neurol 1994; 349:85–110.

    Article  PubMed  CAS  Google Scholar 

  49. Fogarty DJ, Perez-Cerda F, Matute C. KAl-like kainate receptor subunit immunoreactivity in neurons and glia using a novel anti-peptide antibody. Brain Res Mol Brain Res 2000; 81(1-2):164–176.

    Article  PubMed  CAS  Google Scholar 

  50. Sah P, Faber ES. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 2002; 66:345–353.

    Article  PubMed  CAS  Google Scholar 

  51. Vogalis F, Storm JF, Lancaster B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 2003; 18:3155–3166.

    Article  PubMed  Google Scholar 

  52. Young SR, Chuang SC, Wong RK. Modulation of afterpotentials and firing pattern in guinea pig CA3 neurones by group I metabotropic glutamate receptors. J Physiol 2004; 554(Pt 2):37l–385.

    Google Scholar 

  53. Krause M, Offermanns S, Stocker M et al. Functional specificity of G alpha q and G alpha 11 in the cholinergic and glutamatergic modulation of potassium currents and excitability in hippocampal neurons. J Neurosci 2002; 22:666–673.

    PubMed  CAS  Google Scholar 

  54. Scroggs RS, Cardenas CG, Whittaker JA et al. Muscarine reduces calcium-dependent electrical activity in substantia nigra dopaminergic neurons. J Neurophysiol 2001; 86:2966–2972.

    PubMed  CAS  Google Scholar 

  55. Haug T, Storm JF. Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP and CGRP in hippocampal pyramidal neurons. J Neurophysiol 2000; 83:2071–2079.

    PubMed  CAS  Google Scholar 

  56. Tegner J, Grillner S. Interactive effects of the GABABergic modulation of calcium channels and calcium-dependent potassium channels in lamprey. J Neurophysiol 1999; 81:1318–1329.

    PubMed  CAS  Google Scholar 

  57. Carrer HF, Araque A, Buno W. Estradiol regulates the slow Ca2+-activated K+ current in hippocampal pyramidal neurons. J Neurosci 2003; 23:6338–6344.

    PubMed  CAS  Google Scholar 

  58. Heuss C, Scanziani M, Gahwiler BH et al. G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 1999; 2:1070–1077.

    Article  PubMed  CAS  Google Scholar 

  59. Pockett S. Dopamine changes the shape of action potentials in hippocampal pyramidal cells. Brain Res 1985; 342:386–390.

    Article  PubMed  CAS  Google Scholar 

  60. Ren Z, Riley NJ, Garcia EP et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 2003; 23:6608–6616.

    PubMed  Google Scholar 

  61. Frerking M, Schmitz D, Zhou Q et al. Kainate receptors depress excitatory synaptic transmission at CA3—→CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 2001; 21:2958–2966.

    PubMed  CAS  Google Scholar 

  62. Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20:1211–1218.

    Article  PubMed  CAS  Google Scholar 

  63. Dildy-Mayfield JE, Harris RA. Activation of protein kinase C inhibits kainate-induced currents in oocytes expressing glutamate receptor subunits. J Neurochem 1994; 62:1639–1642.

    Article  PubMed  CAS  Google Scholar 

  64. Hirbec H, Francis JC, Lauri SE et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 2003; 37:625–638.

    Article  PubMed  CAS  Google Scholar 

  65. Raymond LA, Blackstone CD, Huganir RL. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 1993; 361:637–641.

    Article  PubMed  CAS  Google Scholar 

  66. Callister RJ, Keast JR, Sah P. Ca(2+)-activated K+ channels in rat otic ganglion cells: role of Ca2+ entry via Ca2+ channels and nicotinic receptors. J Physiol 1997; 500 (Pt 3):57l–582.

    Google Scholar 

  67. Cox CL, Metherate R, Ashe JH. Modulation of cellular excitability in neocortex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Synapse 1994; 16:123–136.

    Article  PubMed  CAS  Google Scholar 

  68. Pedarzani P, Storm JF. Evidence that Ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+-dependent K+ current, IAHP, by acetylcholine, but not by glutamate, in hippocampal neurons. Pflugers Arch 1996; 431:723–728.

    PubMed  CAS  Google Scholar 

  69. Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 1984; 354:319–331.

    PubMed  CAS  Google Scholar 

  70. Segerstrale M, Juuri J, Lanore F et al. High firing rate of neonatal hippocampal interneurons is caused by attenuation of afterhyperpolarizing potassium currents by tonicalfy active kainate receptors. J Neurosci 2010; 30:6507–6514.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ruiz, A. (2011). Kainate Receptors with a Metabotropic Signature Enhance Hippocampal Excitability by Regulating the Slow After-Hyperpolarization in CA3 Pyramidal Neurons. In: Rodríguez-Moreno, A., Sihra, T.S. (eds) Kainate Receptors. Advances in Experimental Medicine and Biology, vol 717. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9557-5_6

Download citation

Publish with us

Policies and ethics