Skip to main content

BTB-Kelch Proteins and Ubiquitination of Kainate Receptors

  • Chapter
Kainate Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 717))

Abstract

Kainate receptors (KAR) form a class of glutamate receptors that have been implicated in epilepsy, stroke, Alzheimer’s and neuropathic pain.1 KAR subtypes are known to be segregated to specific locations within neurons and play significant roles in synaptic transmission and plasticity.2 Increasing evidence suggests a the role for ubiqutination in regulating the number of synaptic neurotransmitter receptors.35 The ubiquitin pathway consists of activation (E1), conjugation (E2) and ligation (E3). Cullins form the largest family of E3 ligase complexes. We have recently shown that the BTB/Kelch domain proteins, actinfilin and mayven, bind both Cul3 and specific KAR subtypes (GluR6 and GluR5-2b) to target these KARs for ubiquitination and degradation.5 In this chapter we will review how these interactions occur, what they mean for the stability of KARs and their associated proteins and how, in turn, they may affect synaptic functions in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dingledine R, Borges K, Bowie D et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51:7–61.

    PubMed  CAS  Google Scholar 

  2. Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 2003; 4:481–495.

    Article  PubMed  CAS  Google Scholar 

  3. Burbea M, Dreier L, Dittman JS et al. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 2002; 35:107–120.

    Article  PubMed  CAS  Google Scholar 

  4. Colledge M, Snyder EM, Crozier RA et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 2003; 40:595–607.

    Article  PubMed  CAS  Google Scholar 

  5. Salinas GD, Blair LA, Needleman LA et al. Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem 2006; 281:40164–40173.

    Article  PubMed  CAS  Google Scholar 

  6. Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 2000; 23:580–587.

    Article  PubMed  CAS  Google Scholar 

  7. Savinainen A, Garcia EP, Dorow D et al. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via postsynaptic density protein 95. J Biol Chem 2001; 276:11382–11386.

    Article  PubMed  CAS  Google Scholar 

  8. Guerrini R, Andermann E, Avoli M et al. Cortical dysplasias, genetics and epileptogenesis. Adv Neurol 1999; 79:95–121.

    PubMed  CAS  Google Scholar 

  9. Lerma J. Kainate reveals its targets. Neuron 1997; 19:1155–1158.

    Article  PubMed  CAS  Google Scholar 

  10. Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal inter-neurons. Nat Neurosci 1998; 1:479–486.

    Article  PubMed  CAS  Google Scholar 

  11. Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 1999; 400:569–573.

    Article  PubMed  CAS  Google Scholar 

  12. Lauri SE, Bortolotto ZA, Bleakman D et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 2001; 32:697–709.

    Article  PubMed  CAS  Google Scholar 

  13. Lauri SE, Segerstrale M, Vesikansa A et al. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2005; 25:4473–4484.

    Article  PubMed  CAS  Google Scholar 

  14. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997; 388:182–186.

    Article  PubMed  CAS  Google Scholar 

  15. Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997; 388:179–182.

    Article  PubMed  CAS  Google Scholar 

  16. Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20:1211–1218.

    Article  PubMed  CAS  Google Scholar 

  17. Fisahn A, Heinemann SF, McBain CJ. The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 2005; 562(Pt l):199–203.

    Article  PubMed  CAS  Google Scholar 

  18. Sommer B, Burnashev N, Verdoorn TA et al. A glutamate receptor channel with high affinity for domoate and kainate. Embo J 1992; 11:1651–1656.

    PubMed  CAS  Google Scholar 

  19. Herb A, Burnashev N, Werner P et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 1992; 8:775–785.

    Article  PubMed  CAS  Google Scholar 

  20. Isaac JT, Mellor J, Hurtado D et al. Kainate receptor trafficking: physiological roles and molecular mechanisms. Pharmacol Ther 2004; 104:163–172.

    Article  PubMed  CAS  Google Scholar 

  21. Bettler B, Boulter J, Hermans-Borgmeyer I et al. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 1990; 5:583–595.

    Article  PubMed  CAS  Google Scholar 

  22. Cui C, Mayer ML. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6 and GluR7. J Neurosci 1999; 19:8281–8291.

    PubMed  CAS  Google Scholar 

  23. Schiffer HH, Swanson GT, Heinemann SF. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 1997; 19:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  24. Wenthold RJ, Trumpy VA, Zhu WS et al. Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies. J Biol Chem 1994; 269:1332–1339.

    PubMed  CAS  Google Scholar 

  25. Standley S, Roche KW, McCallum J et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000; 28:887–898.

    Article  PubMed  CAS  Google Scholar 

  26. Scott DB, Blanpied TA, Swanson GT et al. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 2001; 21:3063–3072.

    PubMed  CAS  Google Scholar 

  27. Greger IH, Khatri L, Kong X et al. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 2003; 40:763–774.

    Article  PubMed  CAS  Google Scholar 

  28. Ren Z, Riley NJ, Garcia EP et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 2003; 23:6608–6616.

    PubMed  Google Scholar 

  29. Ren Z, Riley NJ, Needleman LA et al. Cell surface expression of GluR5 kainate receptors is regulated by an endoplasmic reticulum retention signal. J Biol Chem 2003; 278:52700–52709.

    Article  PubMed  CAS  Google Scholar 

  30. Yan S, Sanders JM, Xu J et al. A C-terminal determinant of GluR6 kainate receptor trafficking. J Neurosci 2004; 24:679–691.

    Article  PubMed  CAS  Google Scholar 

  31. Jaskolski F, Coussen F, Nagarajan N et al. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci 2004; 24:2506–2515.

    Article  PubMed  CAS  Google Scholar 

  32. Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short-and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29:209–216.

    Article  PubMed  CAS  Google Scholar 

  33. Clarke VR, Collingridge GL. Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. Neuropharmacology 2004; 47:363–372.

    Article  PubMed  CAS  Google Scholar 

  34. Bureau I, Dieudonne S, Coussen F et al. Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci USA 2000; 97:6838–6843.

    Article  PubMed  CAS  Google Scholar 

  35. Christensen JK, Paternain AV, Selak S et al. A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 2004; 24:8986–8993.

    Article  PubMed  CAS  Google Scholar 

  36. Hegde AN, DiAntonio A. Ubiquitin and the synapse. Nat Rev Neurosci 2002; 3:854–861.

    Article  PubMed  CAS  Google Scholar 

  37. Murphey RK, Godenschwege TA. New roles for ubiquitin in the assembly and function of neuronal circuits. Neuron 2002; 36:5–8.

    Article  PubMed  CAS  Google Scholar 

  38. Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 2003; 6:231–242.

    Article  PubMed  CAS  Google Scholar 

  39. Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 1999; 72:299–328.

    Article  PubMed  CAS  Google Scholar 

  40. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15:435–467.

    Article  PubMed  CAS  Google Scholar 

  41. Furukawa M, Ohta T, Xiong Y. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem 2002; 277:15758–15765.

    Article  PubMed  CAS  Google Scholar 

  42. Furukawa M, He YJ, Borchers C et al. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 2003; 5:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  43. Xue F, Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993; 72:681–693.

    Article  PubMed  CAS  Google Scholar 

  44. Geyer R, Wee S, Anderson S et al. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 2003; 12:783–790.

    Article  PubMed  CAS  Google Scholar 

  45. Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005; 25:162–171.

    Article  PubMed  CAS  Google Scholar 

  46. Bomont P, Cavalier L, Blondeau F et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 2000; 26:370–374.

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto A, Friedlein A, Imai Y et al. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 2005; 280:3390–3399.

    Article  PubMed  CAS  Google Scholar 

  48. Chen Y, Derin R, Petralia RS et al. Actinfilin, a brain-specific actin-binding protein in postsynaptic density. J Biol Chem 2002; 277:30495–30501.

    Article  PubMed  CAS  Google Scholar 

  49. Soltysik-Espanola M, Rogers RA, Jiang S et al. Characterization of Mayven, a novel actin-binding protein predominantly expressed in brain. Mol Biol Cell 1999; 10:2361–2375.

    PubMed  CAS  Google Scholar 

  50. Sheng M, Pak DT. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 2000; 62:755–778.

    Article  PubMed  CAS  Google Scholar 

  51. Gao L, Blair LA, Salinas GD et al. Insulin-like growth factor-1 modulation of CaV1.3 calcium channels depends on Ca2+ release from IP3-sensitive stores and calcium/calmodulin kinase II phosphorylation of the alpha1 subunit EF hand. J Neurosci 2006; 26:6259–6268.

    Article  PubMed  CAS  Google Scholar 

  52. Sala C, Piech V, Wilson NR et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001; 31:115–130.

    Article  PubMed  CAS  Google Scholar 

  53. Bingol B, Schuman EM. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 2006; 441:1144–1148.

    Article  PubMed  CAS  Google Scholar 

  54. Kang MI, Kobayashi A, Wakabayashi N et al. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA 2004; 101:2046–2051.

    Article  PubMed  CAS  Google Scholar 

  55. Piserchio A, Salinas GD, Li T et al. Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem Biol 2004; 11:469–473.

    Article  PubMed  CAS  Google Scholar 

  56. Goebel DJ, Winkler BS. Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina. J Neurochem 2006; 98:1732–1745.

    Article  PubMed  CAS  Google Scholar 

  57. Schaefer H, Rongo C. KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell 2006; 17:1250–1260.

    Article  PubMed  CAS  Google Scholar 

  58. Sumara I, Peter M. A Cul3-based E3 ligase regulates mitosis and is required to maintain the spindle assembly checkpoint in human cells. Cell Cycle 2007; 6:3004–3010.

    Article  PubMed  CAS  Google Scholar 

  59. Rondou P, Haegeman G, Vanhoenacker P et al. BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase. J Biol Chem 2008; 283:11083–11096.

    Article  PubMed  CAS  Google Scholar 

  60. Mesrobian CM, Bentley CA, Perdue SA et al. The Cul3/KLHL5 E3 Ligase regulates P60/Katanin and is required for normal mitosis in mammalian cells. Submitted.

    Google Scholar 

  61. Dequen F, Bomont P, Gowing G et al. Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 2008; 107:253–264.

    Article  PubMed  CAS  Google Scholar 

  62. Greenberg CC, Connelly PS, Daniels MP et al. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp Cell Res 2008; 314:1177–1191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Marshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marshall, J., Blair, L.A.C., Singer, J.D. (2011). BTB-Kelch Proteins and Ubiquitination of Kainate Receptors. In: Rodríguez-Moreno, A., Sihra, T.S. (eds) Kainate Receptors. Advances in Experimental Medicine and Biology, vol 717. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9557-5_10

Download citation

Publish with us

Policies and ethics