Skip to main content

Effects of Exposure to Chemicals on Noise-Induced Hearing Loss

  • Chapter
  • First Online:
Noise-Induced Hearing Loss

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 40))

Abstract

Several factors have been studied in an effort to explain why the prevalence and degree of noise-induced hearing loss (NIHL) can vary so much within a group and among groups. Some of the factors studied to date include variations in exposure (see Henderson and Hamernik, Chap. 4), age (see Rabinowitz, Chap. 2; Bielefeld, Chap. 10), gender, genetics (see Gong and Lomax, Chap. 9), race, and general health indicators, such as blood pressure and use of certain medications (Toppila et al. 2000). The focus of the present chapter is the interaction of ototoxic industrial chemicals with noise, which results in increased hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Academy of Audiology (AAA). (2009). American Academy of Audiology Position Statement and Clinical Practice Guidelines. Ototoxicity Monitoring. Reston, VA: American Academy of Audiology.

    Google Scholar 

  • Abbate, C., Giorgianni, C., Munao, F., & Brecciaroli, R. (1993). Neurotoxicity induced by exposure to toluene. An electrophysiologic study. International Archives of Occupational and Environmental Health, 64(6), 389–392.

    CAS  PubMed  Google Scholar 

  • Ahn, Y. S., Morata, T. C., Stayner, L. T., & Smith, R. (2005). Hearing loss among iron and steel workers exposed to low levels of carbon monoxide and noise. Abstract of the Ninth International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health. Gyeongju, Korea, September 26–29, 2005.

    Google Scholar 

  • Araki, S., Murata, K., Yokoyama, K., & Uchida, E. (1992). Auditory event-related potential (P300) in relation to peripheral nerve conduction in workers exposed to lead, zinc, and copper: Effects of lead on cognitive function and central nervous system. American Journal of Industrial Medicine, 21(4), 539–547.

    CAS  PubMed  Google Scholar 

  • Ashmore, J. F. (1987). A fast motile response in guinea pig outer hair cells: The cellular basis of the cochhear amplifier. Journal of Physiology, 388(1–2), 323–347.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barregård, L., & Axelsson, A. (1984). Is there an ototraumatic interaction between noise and solvents? Scandinavian Audiology, 13(3), 151–155.

    PubMed  Google Scholar 

  • Bernardi, A. P. A. (2000). Workers exposed to noise and toluene: Study of otoacoustic emissions and contraletral suppression. São Paulo, Brazil: Faculdade de Saúde Pública da Universidade de São Paulo (Master’s degree dissertation in Portuguese).

    Google Scholar 

  • Bleecker, M. L., Ford, D. P., Lindgren, K. N., Scheetz, K., & Tiburzi, M. J. (2003). Association of chronic and current measures of lead exposure with different components of brainstem auditory evoked potentials. Neurotoxicology, 24(4–5), 625–631.

    CAS  PubMed  Google Scholar 

  • Brandt-Lassen, R., Lund, S. P., & Jepsen, G. B. (2000). Rats exposed to toluene and noise may develop loss of auditory sensitivity due to synergistic interaction. Noise and Health, 3(9), 33–44.

    PubMed  Google Scholar 

  • Buchanan, L. H., Counter, S. A., Ortega, F., & Laurell, G. (1999). Distortion product oto-acoustic emissions in Andean children and adults with chronic lead intoxication. Acta Oto-Laryngologica, 119(6), 652–658.

    CAS  PubMed  Google Scholar 

  • Campo, P., Lataye, R., Cossec, B., & Placidi, V. (1997). Toluene-induced hearing loss: A mid-frequency location of the cochlear lesions. Neurotoxicology and Teratology, 19(2), 129–140.

    CAS  PubMed  Google Scholar 

  • Campo, P., Loquet, G., Blachère, V., & Roure, M. (1999). Toluene and styrene: Intoxication route in the rat cochlea. Neurotoxicology and Teratology, 21(4), 427–434.

    CAS  PubMed  Google Scholar 

  • Campo, P., Lataye, R., Loquet, G., & Bonnet, P. (2001). Styrene-induced hearing loss: A membrane insult. Hearing Research, 154(1–2), 170–180.

    CAS  PubMed  Google Scholar 

  • Campo, P., Maguin, K., & Lataye, R. (2007). Effects of aromatic solvents on acoustic reflexes mediated by central auditory pathways. Toxicological Sciences, 99(2), 582–590.

    CAS  PubMed  Google Scholar 

  • Campo, P., Maguin, K., Gabriel, S., Möller, A., Nies, E., Gomez, M. D. S., & Toppila, E. (2009). European Agency for Safety and Health at Work. Combined exposure to noise and ototoxic substances (60 pp.). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Cappaert, N. L., Klis, S. F., Baretta, A. B., Muijser, H., & Smoorenburg, G. F. (2000). Ethyl benzene-induced ototoxicity in rats: A dose-dependent mid-frequency hearing loss. Journal of the Association for Research in Otolaryngology, 1(3), 292–299.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cappaert, N. L., Klis, S. F., Muijser, H., Kulig, B. M., & Smoorenburg, G. F. (2001). Simultaneous exposure to ethyl benzene and noise: Synergistic effects on outer hair cells. Hearing Research, 162(1–2), 67–79.

    CAS  PubMed  Google Scholar 

  • Chang, S. J., Shih, T. S., Chou, T. C., Chen, C. J., Chang, H. Y., & Sung, F. C. (2003). Hearing loss in workers exposed to carbon disulfide and noise. Environmental Health Perspectives, 111(13), 1620–1624.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, G. D., & Fechter, L. D. (1999). Potentiation of octave-band noise induced auditory impairment by carbon monoxide. Hearing Research, 132(1–2), 149–159.

    CAS  PubMed  Google Scholar 

  • Chen, G. D., McWilliams, M. L., & Fechter, L. D. (1999). Intermittent noise-induced hearing loss and the influence of carbon monoxide. Hearing Research, 138(1–2), 181–191.

    CAS  PubMed  Google Scholar 

  • Chen, G. D., Chi, L. H., Kostyniak, P. J., & Henderson, D. (2007). Styrene induced alterations in biomarkers of exposure and effects in the cochlea: Mechanisms of hearing loss. Toxicological Sciences, 98(1), 167–177.

    CAS  PubMed  Google Scholar 

  • Crofton, K. M., & Zhao, X. (1993). Mid-frequency hearing loss in rats following inhalation exposure to trichloroethylene: Evidence from reflex modification audiometry. Neurotoxicology and Teratology, 15(6), 413–423.

    CAS  PubMed  Google Scholar 

  • Crofton, K. M., & Zhao, X. (1997). The ototoxicity of trichloroethylene: Extrapolation and relevance of high-concentration, short-duration animal exposure data. Fundamental and Applied Toxicology, 38(1), 101–106.

    CAS  PubMed  Google Scholar 

  • Crofton, K. M., Lassiter, T. L., & Rebert, C. S. (1994). Solvent-induced ototoxicity in rats: An atypical selective mid-frequency hearing deficit. Hearing Research, 80(1), 25–30.

    CAS  PubMed  Google Scholar 

  • Dallos, P., Evans, B. N., & Hallworth, R. (1991). Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature, 350(6314), 155–157.

    CAS  PubMed  Google Scholar 

  • Davis, R. R., Murphy, W. J., Snawder, J. E., Striley, C. A., Henderson, D., Khan, A., --Krieg, E.F. (2002). Susceptibility to the ototoxic properties of toluene is species specific. Hearing Research, 166(1–2), 24–32.

    CAS  PubMed  Google Scholar 

  • Discalzi, G., Fabbro. D., Meliga, F., Mocellini, A., & Capellaro, F. (1993). Effects of occupational exposure to mercury and lead on brainstem auditory evoked potentials. International Journal of Psychophysiology, 14(1), 21–25.

    CAS  PubMed  Google Scholar 

  • Evans, P., & Halliwell, B. (1999). Free radicals and hearing. Cause, consequence, and criteria. Annals of the New York Academy of Sciences, 884, 19–40.

    Google Scholar 

  • Farahat, T. M., Abdel-Rasoul, G. M., El-Assy, A. R., Kandil, S. H., & Kabil, M. K. (1997). Hearing thresholds of workers in a printing facility. Environmental Research, 73(2), 189–192.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D. (1989). A mechanistic basis for interactions between noise and chemical exposure. Archives of Complex Environmental Studies, 1(1), 23–28.

    Google Scholar 

  • Fechter, L. D., Thorne, P. R., & Nuttall A. L. (1987). Effects of carbon monoxide on cochlear electrophysiology and blood flow. Hearing Research, 27(1), 37–45.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D., Young, J. S., & Carlisle, L. (1988). Potentiation of noise induced threshold shifts and hair cell loss by carbon monoxide. Hearing Research, 34(1), 39–47.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D., Liu, Y, Herr, D. W., & Crofton, K. M. (1998). Trichloroethylene ototoxicity: Evidence for a cochlear origin. Toxicology Sciences, 42(1), 28–35.

    CAS  Google Scholar 

  • Fechter, L. D., Chen, G. D., Rao, D., & Larabee, J. (2000). Predicting exposure conditions that facilitate the potentiation of noise-induced hearing loss by carbon monoxide. Toxicological Sciences, 58(2), 315–323.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D., Chen, G. D., & Johnson, D. L. (2002). Potentiation of noise-induced hearing loss by low concentrations of hydrogen cyanide in rats. Toxicological Sciences, 66(1), 131–138.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D., Klis, S. F., Shirwany, N. A., Moore, T. G., & Rao, D. B. (2003). Acrylonitrile produces transient cochlear function loss and potentiates permanent noise-induced hearing loss. Toxicological Sciences, 75(1), 117–123.

    CAS  PubMed  Google Scholar 

  • Fechter, L. D., Gearhart, C., & Shirwany, N. A. (2004). Acrylonitrile potentiates noise-induced hearing loss in rat. Journal of the Association for Research in Otolaryngology, 5(1), 90–98.

    PubMed Central  PubMed  Google Scholar 

  • Fechter, L. D., Gearhart, C., Fulton, S., Campbell, J., Fisher, J., Na, K., Cocker, D., Nelson-Miller, A., Moon, P., & Pouyatos, B. (2007). JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Toxicological Sciences, 98(2), 510–525.

    CAS  PubMed  Google Scholar 

  • Fuente, A., McPherson, B., Munoz, V., & Pablo Espina, J. (2006). Assessment of central auditory processing in a group of workers exposed to solvents. Acta Oto-Laryngologica, 126(11), 1188–1194.

    PubMed  Google Scholar 

  • Gagnaire, F., & Langlais, C. (2005). Relative ototoxicity of 21 aromatic solvents. Archives of Toxicology, 79(6), 346–354.

    CAS  PubMed  Google Scholar 

  • Gagnaire, F., Marignac, B., Langlais, C., & Bonnet, P. (2001). Ototoxicity in rats exposed to ortho-, meta- and para-xylene vapours for 13 weeks. Pharmacology and Toxicology, 89(1), 6–14.

    CAS  PubMed  Google Scholar 

  • Gagnaire, F., Langlais, C., Grossmann, S., & Wild, P. (2007a). Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks. Archives of Toxicology, 81(2), 127–143.

    CAS  PubMed  Google Scholar 

  • Gagnaire, F., Marignac, B., Blachere, V., Grossmann, S., & Langlais, C. (2007b). The role of toxicokinetics in xylene-induced ototoxicity in the rat and guinea pig. Toxicology, 231(2–3), 147–158.

    CAS  PubMed  Google Scholar 

  • Halsey, K., Skjönsberg, A., Ulfendahl, M., & Dolan, D. F. (2005). Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity. Hearing Research, 201(1–2), 99–108.

    CAS  PubMed  Google Scholar 

  • Hawkins, J. E. (1976). Drug ototoxicity. In W. D, Keidel & W. D. Neff (Eds.), Handbook of sensory physiology (Vol. V/3, pp. 707–748). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Henderson, D., Bielefeld, E. C., Harris, K. C., & Hu, B. H. (2006). The role of oxidative stress in noise-induced hearing loss. Ear and Hearing, 27(1), 1–19.

    PubMed  Google Scholar 

  • Hinshaw, H. C., & Feldman, W. H. (1945). Streptomycin in treatment of clinical tuberculosis: A preliminary report. Proceedings of Staff Meeting, Mayo Clinic, 20, 313.

    Google Scholar 

  • Hirata, M., Ogawa, Y., Okayama, A., & Goto, S. (1992). A cross-sectional study on the brainstem auditory evoked potential among workers exposed to carbon disulfide. International Archives of Occupational and Environmental Health, 64(5), 321–324.

    CAS  PubMed  Google Scholar 

  • Humes, L. E. (1984). Noise-induced hearing loss as influenced by other agents and by some physical characteristics of the individual. Journal of the Acoustical Society of America, 76(5), 1318–1329.

    CAS  PubMed  Google Scholar 

  • Hwang, Y. H., Chiang, H. Y., Yen-Jean, M. C., & Wang, J. D. (2009). The association between low levels of lead in blood and occupational noise-induced hearing loss in steel workers. The Science of the Total Environ, 408(1), 43–9.

    CAS  PubMed  Google Scholar 

  • Johnson, A. C., & Canlon, B. (1994). Progressive hair cell loss induced by toluene exposure. Hearing Research, 75(1–2), 201–208.

    CAS  PubMed  Google Scholar 

  • Johnson, A. C., & Morata, T. C. (2010). Occupational exposure to chemicals and hearing impairment. The Nordic Expert Group for Criteria Documentation of Health Risks of Chemicals, Nordic Expert Group. Arbete och Hälsa, 44(4), 1–177.

    Google Scholar 

  • Johnson, A. C., Morata, T. C., Lindblad, A. C., Nylén, P. R., Svensson, E. B., Krieg, E., Aksentijevic, A., & Prasher, D. (2006). Audiological findings in workers exposed to styrene alone or in concert with noise. Noise and Health, 8(3), 45–57.

    PubMed  Google Scholar 

  • Kopke, R., Allen, K. A., Henderson, D., Hoffer, M., Frenz, D., & Van de Water, T. (1999). A radical demise. Toxins and trauma share common pathways in hair cell death. Annals of the New York Academy Sciences, 884, 171–191.

    CAS  Google Scholar 

  • Lacerda, A. B. M. (2007). Effets de l’exposition chronique au monoxyde de carbone et au bruit sur l’audition. Montréal, Canada: Faculté des études supérieures de l’Université de Montréal, (Doctoral thesis in French).

    Google Scholar 

  • Lacerda, A., Leroux, T., & Gagne, J. P. (2005). Noise and carbon monoxide exposure increases hearing loss in workers. In Proceedings of the 149th meeting of the Acoustical Society of America, Vancouver, Canada, May 16–20.

    Google Scholar 

  • Lasky, R. E., Maier, M. M., Snodgrass, E. B., Hecox, K. E., & Laughlin, N. K. (1995). The effects of lead on otoacoustic emissions and auditory evoked potentials in monkeys. Neurotoxicology and Teratology, 17(6), 633–644.

    CAS  PubMed  Google Scholar 

  • Lasky, R. E., Luck, M. L., Torre, P, 3 rd & Laughlin, N. (2001). The effects of early lead exposure on auditory function in rhesus monkeys. Neurotoxicology and Teratology, 23(6), 639–649.

    CAS  PubMed  Google Scholar 

  • Lataye, R., Campo, P., & Loquet, G. (2000). Combined effects of noise and styrene exposure on hearing function in the rat. Hearing Research, 139(1–2), 86–96.

    CAS  PubMed  Google Scholar 

  • Lataye, R., Campo, P., Barthelemy, C., Loquet, G., & Bonnet, P. (2001). Cochlear pathology induced by styrene. Neurotoxicology and Teratology, 23(1), 71–79.

    CAS  PubMed  Google Scholar 

  • Lataye, R., Campo, P., Pouyatos, B., Cossec, B., Blachere, V., & Morel, G. (2003). Solvent ototoxicity in the rat and guinea pig. Neurotoxicology and Teratology, 25(1), 39–50.

    CAS  PubMed  Google Scholar 

  • Lataye, R., Campo, P., Loquet, G., & Morel, G. (2005). Combined effects of noise and styrene on hearing: Comparison between active and sedentary rats. Noise and Health, 7(27), 49–64.

    CAS  PubMed  Google Scholar 

  • Lataye, R., Maguin, K., & Campo, P. (2007). Increase in cochlear microphonic potential after toluene administration. Hearing Research, 230(1–2), 34–42.

    CAS  PubMed  Google Scholar 

  • Laukli, E., & Hansen, P. W. (1995). An audiometric test battery for the evaluation of occupational exposure to industrial solvents. Acta Oto-Laryngologica, 115(2), 162–164.

    CAS  PubMed  Google Scholar 

  • Laurell, G., & Jungelius, U. (1990). High-dose cisplatin treatment: Hearing loss and plasma concentrations. Laryngoscope, 100(7), 724–734.

    CAS  PubMed  Google Scholar 

  • Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., & Miller, J. M. (2007). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research, 226(1–2), 22–43.

    PubMed Central  PubMed  Google Scholar 

  • Le Prell, C. G., Hensley, B. N., Campbell, K. C. M., Hall, J. W. III, & Guire, K. (2011). Evidence of hearing loss in a “normally-hearing” college-student population. International Journal of Audiology, 50(Supplement 1), S21–31.

    PubMed Central  PubMed  Google Scholar 

  • Lehnhardt, E. (1965). [Occupational injuries to the ear]. Archiv für Ohren-, Nasen- und Kehlkopfheilkund, vereinigt mit Zeitschrift für Hals-, Nasen- und Ohrenheilkunde, 185, 1–242 (in German).

    Google Scholar 

  • Leroux, T., Lacerda, A., & Gagne, J. P. (2008). Auditory effects of chronic exposure to carbon monoxide and noise among workers. In: Proceedings of the 9th International Congress on Noise as a Public Health Problem (ICBEN), Foxwood, Connecticut, July 21–25, 2008.

    Google Scholar 

  • Lilienthal, H., & Winneke, G. (1996). Lead effects on the brain stem auditory evoked potential in monkeys during and after the treatment phase. Neurotoxicology and Teratology, 18(1), 17–32.

    CAS  PubMed  Google Scholar 

  • Liu, Y., & Fechter, L. D. (1997). Toluene disrupts outer hair cell morphometry and intracellular calcium homeostasis in cochlear cells of guinea pigs. Toxicology and Applied Pharmacology, 142(2), 270–277.

    CAS  PubMed  Google Scholar 

  • Loquet, G., Campo, P., & Lataye, R. (1999). Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicology and Teratology, 21(4), 689–697.

    CAS  PubMed  Google Scholar 

  • Loquet, G., Campo, P., Lataye, R., Cossec, B., & Bonnet, P. (2000). Combined effects of exposure to styrene and ethanol on the auditory function in the rat. Hearing Research, 148(1–2), 173–180.

    CAS  PubMed  Google Scholar 

  • Lumio, J. S. (1948). Hearing deficiencies caused by carbon monoxide (generator gas). Acta Oto-Laryngologica, 71(Supplement), 1–112.

    Google Scholar 

  • Lund, S. P., & Kristiansen, G. B. (2004). Studies on the auditory effects of combined exposures to noise, toluene, and carbon monoxide. Noise and industrial chemicals: Interaction effects on hearing and balance (pp. 56–76). NoiseChem. Key Action 4: Environmental and Health 2001–2004, Final Report.

    Google Scholar 

  • Lund, S. P., & Kristiansen, G. B. (2008). Hazards to hearing from combined exposure to toluene and noise in rats. International Journal for Occupational Medicine and Environmental Health, 21(1), 47–57.

    Google Scholar 

  • Maguin, K., Lataye, R., Campo, P., Cossec, B., Burgart, M., & Waniusiow, D. (2006). Ototoxicity of the three xylene isomers in the rat. Neurotoxicology and Teratology, 28(6), 648–656.

    CAS  PubMed  Google Scholar 

  • Maguin, K., Campo, P., & Parietti-Winkler, C. (2009). Toluene can perturb the neuronal voltage-dependent Ca2+ channels involved in the middle-ear reflex. Toxicological Sciences, 107(2), 473–481.

    CAS  PubMed  Google Scholar 

  • Mäkitie, A., Pirvola, U., Pyykkö, I., Sakakibara, H., Riihimäki, V., & Ylikoski, J. (2002). Functional and morphological effects of styrene on the auditory system of the rat. Archives of Toxicology, 76(1), 40–47.

    PubMed  Google Scholar 

  • Mäkitie, A.A., Pirvola, U., Pyykkö, I., Sakakibara, H., Riihimäki, V., & Ylikoski, J. (2003). The ototoxic interaction of styrene and noise. Hearing Research, 179(1–2), 9–20.

    PubMed  Google Scholar 

  • Mascagni, P., Formenti, C., Pettazzoni, M., Feltrin, G., & Toffoletto, F. (2007). [Hearing function and solvent exposure: Study of a worker population exposed to styrene]. Giornale Italiano di Medicina de Lavoro ed Ergonomia, 29(3 Supplement), 277–279 (in Italian with English abstract).

    CAS  Google Scholar 

  • Möller, C., Ödkvist, L. M., Thell, J., Larsby, B., Hyden, D., Bergholtz, L. M., & Tham, R. (1989). Otoneurological findings in psycho-organic syndrome caused by industrial solvent exposure. Acta Oto-Laryngologica, 107(1), 5–12.

    PubMed  Google Scholar 

  • Morata, T. C. (1989). Study of the effects of simultaneous exposure to noise and carbon disulfide on workers’ hearing. Scandinavian Audiology, 18(1), 53–58.

    CAS  PubMed  Google Scholar 

  • Morata, T.C., Fiorini, A.C., Fischer, F.M., Colacioppo, S., Wallingford, K.M., Krieg, E.F., Dunn, D.E., Gozzoli, L., Padrão, M.A., & Cesar, C.L. (1997). Toluene-induced hearing loss among rotogravure printing workers. Scandinavian Journal of Work Environment and Health, 23(4), 289–98.

    PubMed  Google Scholar 

  • Morata, T. C., Johnson, A. C., Nylén, P., Svensson, E. B., Cheng, J., Krieg, E. F., Lindblad, A. C., Ernstgård, L., & Franks, J. (2002). Audiometric findings in workers exposed to low levels of styrene and noise. Journal of Occupational and Environmental Medicine, 44(9), 806–814.

    PubMed  Google Scholar 

  • Morioka, I., Kuroda, M., Miyashita, K., & Takeda, S. (1999). Evaluation of organic solvent ototoxicity by the upper limit of hearing. Archives of Environmental Health, 54(5), 341–346.

    CAS  PubMed  Google Scholar 

  • Morioka, I., Miyai, N., Yamamoto, H., & Miyashita, K. (2000). Evaluation of combined effect of organic solvents and noise by the upper limit of hearing. Industrial Health, 38(2), 252–257.

    CAS  PubMed  Google Scholar 

  • Muijser, H., Lammers, J. H., & Kullig, B. M. (2000). Effects of exposure to trichloroethylene and noise on hearing in rats. Noise and Health, 2(1), 57–66.

    PubMed  Google Scholar 

  • Osman, K., Pawlas, K., Schutz, A., Gazdzik, M., Sokal, J. A., & Vahter, M. (1999). Lead exposure and hearing effects in children in Katowice, Poland. Environmental Research, 80(1), 1–8.

    CAS  PubMed  Google Scholar 

  • Otto, D. A., & Fox, D. A. (1993). Auditory and visual dysfunction following lead exposure. Neurotoxicology, 14(2–3), 191–207.

    CAS  PubMed  Google Scholar 

  • Pouyatos, B., Campo, P., & Lataye, R. (2005a). Influence of age on noise- and styrene-induced hearing loss in the Long-Evans rat. Environmental Toxicology and Pharmacology, 19(3), 561–570.

    CAS  PubMed  Google Scholar 

  • Pouyatos, B., Gearhart, C. A., & Fechter, L. D. (2005b). Acrylonitrile potentiates hearing loss and cochlear damage induced by moderate noise exposure in rats. Toxicology and Applied Pharmacology, 204(1), 46–56.

    CAS  PubMed  Google Scholar 

  • Pouyatos, B., Gearhart, C., Nelson-Miller, A., Fulton, S., & Fechter, L. (2007). Oxidative stress pathways in the potentiation of noise-induced hearing loss by acrylonitrile. Hearing Research, 224(1–2), 61–74.

    CAS  PubMed  Google Scholar 

  • Prosen, C. A., & Stebbins, W. C. (1980). Ototoxicity. In P. S. Spencer, & H. H. Schaumburg (Eds.), Experimental and clinical neurotoxicology (pp. 62–76). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Pryor, G. T., Rebert, C. S., Dickinson, J., & Feeney, E. M. (1984). Factors affecting toluene-induced ototoxicity in rats. Neurobehavioral Toxicology and Teratology, 6(3), 223–238.

    CAS  PubMed  Google Scholar 

  • Rao, D., & Fechter, L. D. (2000a). Protective effects of phenyl-N-tert-butylnitrone on the potentiation of noise-induced hearing loss by carbon monoxide. Toxicology and Applied Pharmacology, 167(2), 125–131.

    CAS  PubMed  Google Scholar 

  • Rao, D. B., & Fechter, L. D. (2000b). Increased noise severity limits potentiation of noise induced hearing loss by carbon monoxide. Hearing Research, 150(1–2), 206–214.

    CAS  PubMed  Google Scholar 

  • Rebert, C. S., Day, V. L., Matteucci, M. J., & Pryor, G. T. (1991). Sensory-evoked potentials in rats chronically exposed to trichloroethylene: Predominant auditory dysfunction. Neurotoxicology and Teratology, 13(1), 83–90.

    CAS  PubMed  Google Scholar 

  • Rice, D. C. (1997). Effects of lifetime lead exposure in monkeys on detection of pure tones. Fundamental and Applied Toxicology, 36(2), 112–118.

    CAS  PubMed  Google Scholar 

  • Rice, D. C., & Gilbert, S. G. (1992). Exposure to methyl mercury from birth to adulthood impairs high-frequency hearing in monkeys. Toxicology and Applied Pharmacology, 115(1), 6–10.

    CAS  PubMed  Google Scholar 

  • Schacht, J., & Hawkins, J. E. (2006). Sketches of otohistory. Part 11. Ototoxicity: Drug-induced hearing loss. Audiology and Neurootology, 11(1), 1–6.

    Google Scholar 

  • Schwartz, J., & Otto, D. (1987). Blood lead, hearing thresholds, and neurobehavioral development in children and youth. Archives of Environmental Health, 42(3), 153–160.

    CAS  PubMed  Google Scholar 

  • Schwartz, J., & Otto, D. (1991). Lead and minor hearing impairment. Archives of Environmental Health, 46(5), 300–305.

    CAS  PubMed  Google Scholar 

  • Schäper, M., Demes, P., Zupanic, M., Blaszkewicz, M., & Seeber, A. (2003). Occupational toluene exposure and auditory function: Results from a follow-up study. Annals of Occupational Hygiene, 47(6), 493–502.

    PubMed  Google Scholar 

  • Śliwińska-Kowalska, M., Zamyslowska-Szmytke, E., Szymczak, W., Kotylo, P., Fiszer, M., Wesolowski, W., & Pawlaczyk-Luszcynska, M. (2003). Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. Journal of Occupational and Environmental Medicine, 45(1), 15–24.

    PubMed  Google Scholar 

  • Sullivan, M. J., Rarey, K. E., & Conolly, R. B. (1988). Ototoxicity of toluene in rats. Neurotoxicology and Teratology, 10(6), 525–530.

    CAS  PubMed  Google Scholar 

  • Toppila, E., Pyykkö, I., Starck, J., Kaksonen, R., & Ishizaki, H. (2000). Individual risk factors in the development of noise-induced hearing loss. Noise Health, 2(8), 59–70.

    PubMed  Google Scholar 

  • Vrca, A., Karacic, V., Bozicevic, D., Bozikov, V., & Malinar, M. (1996). Brainstem auditory evoked potentials in individuals exposed to long-term low concentrations of toluene. American Journal of Industrial Medicine, 30(1), 62–66.

    CAS  PubMed  Google Scholar 

  • Wu, T. N., Shen, C. Y., Lai, J. S., Goo, C. F., Ko, K. N., Chi, H. Y., Chang, P. Y., & Liou, S. H. (2000). Effects of lead and noise exposures on hearing ability. Archives of Environmental Health, 55(2), 109–114.

    CAS  PubMed  Google Scholar 

  • Yamamura, K., Terayama, K., Yamamoto, N., Kohyama, A., & Kishi, R. (1989). Effects of acute lead acetate exposure on adult guinea pigs: Electrophysiological study of the inner ear. Fundamental and Applied Toxicology, 13(3), 509–515.

    CAS  PubMed  Google Scholar 

  • Yamane, H., Nakai, Y., Takayama, M., Iguchi, H., Nakagawa, T., & Kojima, A. (1995). Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. European Archives of Oto-rhino-laryngology, 252(8), 504–508.

    CAS  PubMed  Google Scholar 

  • Young, J. S., Upchurch, M. B., Kaufman, M. J., & Fechter, L. D. (1987). Carbon monoxide exposure potentiates high-frequency auditory threshold shifts induced by noise. Hearing Research, 26(1), 37–43.

    CAS  PubMed  Google Scholar 

  • Ödkvist, L. M., Arlinger, S. D., Edling, C., Larsby, B., & Bergholtz, L. M. (1987). Audiological and vestibulo-oculomotor findings in workers exposed to solvents and jet fuel. Scandinavian Audiology, 16(1), 75–81.

    PubMed  Google Scholar 

  • Ödkvist, L. M., Möller, C., & Thuomas, K. A. (1992). Otoneurologic disturbances caused by solvent pollution. Otolaryngology Head and Neck Surgery, 106(6), 687–692.

    PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Dr. Derek E. Dunn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais C. Morata .

Editor information

Editors and Affiliations

Additional information

Disclaimer: The findings and conclusions in this chapter are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morata, T.C., Johnson, AC. (2012). Effects of Exposure to Chemicals on Noise-Induced Hearing Loss. In: Le Prell, C.G., Henderson, D., Fay, R.R., Popper, A.N. (eds) Noise-Induced Hearing Loss. Springer Handbook of Auditory Research, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9523-0_11

Download citation

Publish with us

Policies and ethics