Skip to main content

Life in the Rhizosphere

  • Chapter
Pseudomonas

Abstract

The term rhizosphere is used for the zone of intense bacterial activity around plant roots. It is assumed to extend from the root surface into the soil for up to a few millimeters. The rhizosphere can be divided into the rhizoplane (i.e., the root surface), the endorhizosphere (i.e., the internal root parts) and the ectorhizosphere (in this chapter experimentally defined as the thin layer of sand or soil adhering to the roots). The term rhizosphere was introduced by the German microbiologist Lorenz Hiltner76 who described the “rhizosphere effect,” that is, the observation that bacterial levels in the rhizosphere are 10–1000-fold higher than in the surrounding soil. This effect is ascribed to the secretion of nutrients by roots and seeds. These so-called “exudates” attract microbes which feed on exudates. These microbes are often included in a layer of mucigel, a gelatinous material which covers the root. The root cap looses sloughed root cap cells which become heavily colonized and autolyse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons S., Abbas A., Adams C., Fenton A., and O’Gara F., 2000, A regulatory RNA (PrrB RNA) modulates expression of the secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol., 182:3913–3919.

    PubMed  CAS  Google Scholar 

  2. Abbas A., Morissey J.P., Carnicero Marquez P., Sheehan M.M., Delany I.R., and O’Gara, F., 2002, Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol, 184:3008–3016.

    PubMed  CAS  Google Scholar 

  3. Audenaert K., Pattery T., Comelis P, and Höfte M., 2002, Induction of systemic resistance to Botrytis cinera in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact., 15:1147–1156.

    PubMed  CAS  Google Scholar 

  4. Anjaiah V., Koedam N., Nowak-Thompson B., Loper J.E., Höfte M., Tabi Tambong J., and Comelis P., 1998, Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol. Plant-Microbe Interact., 11:847–854.

    CAS  Google Scholar 

  5. Bakker P.A., Glandorf D.C., Viebahn M., Ouwens T.W, Smit E., Leeflang P., Wemars K., Thomashow L.S., Thomas-Oates I.E., and van Loon L.C., 2002, Effects of Pseudomonas Putida modified to produce phenazine-l carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek, 81:617–624.

    PubMed  CAS  Google Scholar 

  6. Bangera M.G. and Thomashow L.S., 1999, Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol., 181:3155–3163.

    PubMed  CAS  Google Scholar 

  7. Barea J.M., Andrade G., Bianciotto V., Dowling D., Lohrke S., Bonfante P., O’Gara F., and Azcon-Aguilar C., 1998, Impact of arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl. Environ. Microbiol., 64:2304–2307.

    PubMed  CAS  Google Scholar 

  8. Bassler B.L., 1999, How bacteria talk to each other: Regulation of gene expression by quorum sensing. Curr. Opin. Microbiol., 2:582–587.

    PubMed  CAS  Google Scholar 

  9. Bauer W.D. and Robinson J.B., 2002, Disruption of bacterial quorum sensing by other organisms. Curr. Opin. Biotechnol., 13:234–237.

    PubMed  CAS  Google Scholar 

  10. Bianciotto V., Andreotti S., Balestrini R., Bonfante P., and Perotto S., 2001, Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHAO show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol. Plant Microbe Interact., 14:255–260.

    PubMed  CAS  Google Scholar 

  11. Bianciotto Y., Minerdi S., Perotto S., and Bonfante P., 1996, Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193:123–131.

    Google Scholar 

  12. Bloemberg G.V. and Lugtenberg B.J.J., 2001, Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol., 4:343–350.

    PubMed  CAS  Google Scholar 

  13. Bloemberg G.V., O’Toole G.A., Lugtenberg B.J.J., and Kolter R., 1997, Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol., 63:4543–4551.

    PubMed  CAS  Google Scholar 

  14. Bloemberg G.V., Wijfjes A.H.M., Lamers G.E.M., Stuurman N., and Lugtenberg B.J.J., 2000, Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant-Microbe Interact., 13:1170–1176.

    PubMed  CAS  Google Scholar 

  15. Blumer C., Heeb S., Pessi G., and Haas D., 1999, Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci., 96:14073–14078.

    PubMed  CAS  Google Scholar 

  16. Bolwerk A., Lagopodi A.L., Wijfjes A.H.M., Lamers G.E.M., Chin-A-Woeng F.C., Lugtenberg B.J.J., and Bloemberg G.V., 2003, Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact., 16:983–993.

    PubMed  CAS  Google Scholar 

  17. Bull C.T., Weller D.M., and Thomashow L.S., 1991, Relationship between root colonization and suppression of Gaeumannomyces graminis var. triciti by Pseudomonas strain 2–79. Phytopathology, 81:954–959.

    Google Scholar 

  18. Camacho Carvajal M.M., 2001, Molecular characterization of the roles of type 4 pili, NDH-I and PyrR in rhizosphere colonization of Pseudomonas fluorescens WCS365. PhD Thesis, Univ. Leiden The Netherlands.

    Google Scholar 

  19. Camacho Carjaval M.M., Lugtenberg B.J.J., and Bloemberg G.V., 2002, Characterization of NADH dehydrogenase of Pseudomonas fluorescens WCS365 and their role in competitive root colonization. Mol. Plant Microb. Interact., 15:662–671.

    Google Scholar 

  20. Campbell R. and Rovira A.D., 1973, The study of the rhizosphere by scanning electron microscopy. Soil Biol. Biochem., 5:747–752.

    Google Scholar 

  21. Camprubi S., Merino S., Guillot J.F., and Tomas J.M., 1993, The role of the O-antigen lipopolysaccharide on the colonization in vivo of the germfree chicken gut by Klebsiella pneumonia. Microb. Pathol., 14:433–440.

    CAS  Google Scholar 

  22. Chabeaud P., de Groot A., Bitter W., Tommassen J., Heulin T., and Achouak W., 2001, Phase-variable expression of an operon encoding extracellular alkaline protease, serine protease homologue and lipase in Pseudomonas brassicacearum. J. Bacteriol., 183:2117–2120.

    PubMed  CAS  Google Scholar 

  23. Chabot R., Antoun H., Kloepper J.W, and Beauchamp C.J., 1996, Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol., 62:2767–2772.

    PubMed  CAS  Google Scholar 

  24. Chancey S.T., Wood D.W., Pierson E.A., and Pierson III L.S., 2002, Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aereofaciens 30–84 in the wheat rhizosphere. Appl. Environ. Microbiol., 68:3308–3314.

    PubMed  CAS  Google Scholar 

  25. Chancey S.T., Wood D.W., and Pierson III L.S., 1999, Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl. Environ. Microbiol., 65:2294–2299.

    PubMed  CAS  Google Scholar 

  26. Chiang S.L. and Mekalanos J.J., 1998, Use of signature-tagged transposon mutagenesis to identify Vibrio cholera genes critical for colonization. Mol. Microbiol., 27:797–805.

    PubMed  CAS  Google Scholar 

  27. Chin-A-Woeng T.F.C., Bloemberg G.V., and Lugtenberg B.J.J., 2003, Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist, 157:503–523.

    CAS  Google Scholar 

  28. Chin-A-Woeng T.F.C., Bloemberg G.V., and Lugtenberg B.J.J., 2004, Root colonization following seed inoculation. In A.K. Verma, I. Abbott, R. Hampp, D. Werner, (eds.) Plant Surface Microbiology. Springer Verlag Berlin, in press.

    Google Scholar 

  29. Chin-A-Woeng T.F.C., Bloemberg G.V., Mulders I.H.M., Dekkers L.C., and Lugtenberg, B.J.J., 2000, Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-l-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol. Plant-Microbe Interact., 13:1340–1345.

    PubMed  CAS  Google Scholar 

  30. Chin-A-Woeng T.F.C., Bloemberg G.V., van der Bij A.J., van der Drift K.M.G.M., Schripsema J., et al., 1998, Biocontrol by phenazine-l-carboxamide-producing Pseudomonas Chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicislycopersici. Mol. Plant-Microbe Interact., 11:1069–1077.

    CAS  Google Scholar 

  31. Chin-A-Woeng T.F.C., de Priester W., van der Bij A.J., and Lugtenberg B.J.J., 1997, Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365 using scanning electron microscopy. Mol. Plant-Microbe Interact., 10:79–86.

    CAS  Google Scholar 

  32. Chin-A-Woeng T.F.C., Lagopodi A.L., Mulders I.H.M., Bloemberg G.V., and Lugtenberg, B.J.J., 2004, Visualisation of rhizosphere interactions of Pseudomonas and Bacillus biocontrol strains. In A.J. Verma, L. Abbott, R. Hampp, D. Werner, (eds.) Plant Surface Microbiology. Springer Verlag Berlin, in press.

    Google Scholar 

  33. Chin-A-Woeng T.F.C., Lugtenberg B.J.J., and Bloemberg G.V., 2003, Mechanisms of biocontrol of phytopathogenic fungi by Pseudomonas spp. In G. Stacey and N. Keen (eds.) Molecular Plant Microbe Interactions., Vol. 6, pp. 173–225.

    Google Scholar 

  34. Chin-A-Woeng T.F.C., Thomas-Oates J.E., Lugtenberg B.J.J., and Bloemberg G.V., 2000, Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-l-carboxylic acid producing Pseudomonas. Mol. Plant Microbe Interact., 14:1006–1015.

    Google Scholar 

  35. Clementz T., Bednarski J.J., and Raetz C.R.H., 1996, Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipidA. J. Biol. Chem., 271: 12095–12102.

    PubMed  CAS  Google Scholar 

  36. Colbert S.F., Hendson M., Ferri M., and Schroth M.N., 1993, Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Appl. Environ. Microbiol., 59:2071–2076.

    PubMed  CAS  Google Scholar 

  37. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., and Lappin-Scott M., 1995, Microbial biofilms. Annu. Rev. Microbiol., 49:711–745.

    CAS  Google Scholar 

  38. Curl E.A. and Truelove B., 1986, The Rhizosphere. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  39. Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., and Greenberg E.P., 1998, The involvement of cell-cell signals in the development of a bacterial biofilm. Science., 280:295–298.

    PubMed  CAS  Google Scholar 

  40. Dekkers L.C., Bloemendaal C.I.P., de Weger L.A., Wijffelman C.A., Spaink H.P., and Lugtenberg B.J.J., 1998, A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact., 11:45–56.

    PubMed  CAS  Google Scholar 

  41. Dekkers L.C., Mulders I.H.M., Phoelich C.C., Chin-A-Woeng T.F.C., Wijfjes A.H.M., and Lugtenberg B.J.J., 2000, The sss colonization gene of the tomato-Fusariumoxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild type Pseudomonas bacteria. Mol. Plant-Microbe Interact., 13:1177–1183.

    PubMed  CAS  Google Scholar 

  42. Dekkers L.C., Phoelich C.C., van der Fits L., and Lugtenberg B.J.J., 1998, A site specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc. Natl. Acad. Sci., USA 95:7051–7056.

    PubMed  CAS  Google Scholar 

  43. Dekkers L.C., van der Bij A.J., Mulders I.H.M., Phoelich C.C., Wentwoord R.A.R. et al., 1998, Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol. Plant-Microbe Interact., 11:763–771.

    PubMed  CAS  Google Scholar 

  44. Delany I., Sheehan M.M., Fenton A., Bardin S., Aarons S., and O’Gara F., 2000, Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: Genetic analysis of phlF as a transcriptional repressor. Microbiology, 146:537–546.

    PubMed  CAS  Google Scholar 

  45. DeMeyer G., Capieau K., Audenaert K., Buchala A., Metraux J.P., and Höfte M., 1999, Nanogram amounts of salicilic acid produced by the rhizobacterium Pseudomonas Aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant Microbe. Interact., 12:450–458.

    CAS  Google Scholar 

  46. De Weert S., Vermeiren H., Mulders I.H.M., Kuiper I., Hendrickx N., Bloemberg G.V., Vanderleyden J., De Mot R., and Lugtenberg B.J.J., 2002, Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe. Interact., 15:1173–1180.

    PubMed  Google Scholar 

  47. De Weger L.A., Dunbar P., Mahafee W., Lugtenberg B.J.J., and Sayler G.S., 1991, Use of bioluminescence markers for detection of Pseudomonas bacteria in the rhizosphere. Appl. Environ. Microbiol., 57:3641–3644.

    PubMed  Google Scholar 

  48. De Weger L.A., Jann B., Jann K., and Lugtenberg B.J.J., 1987, Lipopolysaccharides of Pseudomonas spp. that stimulate plant growth: Composition and use for strain identification. J. Bacteriol., 169:1441–1446.

    PubMed  Google Scholar 

  49. Weger L.A., Kuiper I., van der Bij A.J., and Lugtenberg B.J.J., 1997, Use of a lux-based procedure to rapidly visualize root colonization by Pseudomonas fluorescens in the wheat rhizosphere. Antonie van Leeuwenhoek, J. Microbiol. Serol., 72:365–372.

    Google Scholar 

  50. De Weger L.A., van der Vlugt C.I.M., Wijfjes A.H.M., Bakker P.A.H.M., Schippers B., and Lugtenberg B.J.J., 1987, Flagella of a plant growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol., 169:2769–2773.

    PubMed  Google Scholar 

  51. Dong Y.H., Wang L.H., Xu J.L., Zhang H.B., Zhang X.F., and Zhang L.H., 2001, Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411:813–817.

    PubMed  CAS  Google Scholar 

  52. Dowling D.N. and O’Gara F., 1994, Metabolites of Pseudomonas involved in the biocontrol of plant disease. Tibtech, 12:133–142.

    CAS  Google Scholar 

  53. Duffy B. and Défago G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol., 65:2429–2438.

    PubMed  CAS  Google Scholar 

  54. Duffy B. and Défago G., 2000, Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol., 66:3142–3150.

    PubMed  CAS  Google Scholar 

  55. Duponnois R. and Garbaye J., 1990, Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can. J. Bot., 68:2148–2152.

    Google Scholar 

  56. Dybvig K., 1993, DNA rearrangements and phenotypic switching in prokaryotes. Mol. Microbiol., 10:465–471.

    PubMed  CAS  Google Scholar 

  57. Espinosa-Urgel M., Salido A., and Ramos J.L., 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol., 182:2363–2369.

    PubMed  CAS  Google Scholar 

  58. Fedi S., Tola E., Moënne-Loccoz Y., Dowling D.N., Smith L.M., and O’Gara F., 1997, Evidence for signalling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113 P. Ultimum represses the expression of genes in P. Fluorescens F113, resulting in altered ecological fitness. Appl. Environ. Microbiol., 63:4261–4266.

    PubMed  CAS  Google Scholar 

  59. Foster R.C. and Rovira A.D., 1976, Ultrastructure of wheat rhizosphere. New Phytol., 76:343–352.

    Google Scholar 

  60. Foster R.C., 1981, The ultrastructure and histochemistry of the rhizosphere. New Phytol., 89:263–273.

    Google Scholar 

  61. Foster R.C., 1982, The fine structure of epidermal cell mucilages of roots. New Phytol., 91:727–740.

    Google Scholar 

  62. Foster R.C., Rovira A.D., and Cock T.W., 1983, Ultrastructure of the root-soil interface. American Phytopathological Society St. Paul, MN.

    Google Scholar 

  63. Fray R.G., Troup J.P., Daykin M., Wallace A., Williams P., Stewart G.S.A.B., and Grierson, D., 1999, Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotechnol., 17:1017–1020.

    CAS  Google Scholar 

  64. Frey-Klett P., Pierrat J.C., and Garbaye J., 1997, Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl. Environ. Microbiol., 63:139–144.

    PubMed  CAS  Google Scholar 

  65. Fukui R., Poinar E.I., Bauer P.H., Schroth M.N., Hendson M. et al., 1994, Spatial colonization patterns and interaction of bacteria on inoculated sugar beet seed. Phytopathology, 84:1338–1345.

    Google Scholar 

  66. Fuqua W.C., Winans S.C., and Greenberg E.P., 1994, Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269–275.

    PubMed  CAS  Google Scholar 

  67. Garbaye J., 1994, Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol., 128:197–210.

    Google Scholar 

  68. Glandorf D.C.M., 1992, Root Colonization by Fluorescent Pseudomonas. PhD thesis. Univ. Utrecht The Netherlands.

    Google Scholar 

  69. Glick B.R., Karaturovíc and Newel P.C., 1995, A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol., 41:533–536.

    CAS  Google Scholar 

  70. Gomez-Gomez L., and Boller T., 2000, FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol., Cell 5:1003–1011.

    CAS  Google Scholar 

  71. Graf J., Dunlap P.V., and Ruby E.G., 1994, Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol., 176:6789–6791.

    Google Scholar 

  72. Haas D., Blumer C., and Keel C., 2000, Biocontrol ability of fluorescent pseudomonads genetically dissected: Importance of positive feedback regulation. Curr. Opin. Biotechnol., 11:290–297.

    PubMed  CAS  Google Scholar 

  73. Haas D., Keel C., and Reimmann C., 2002, Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, 81:385–395.

    PubMed  CAS  Google Scholar 

  74. Hahn H.P., 1997, The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aerogunisa a review. Gene, 192:99–108.

    PubMed  CAS  Google Scholar 

  75. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., and Aderem A., 2001, The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410:1099–1103.

    PubMed  CAS  Google Scholar 

  76. Hiltner L., 1904, Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Berücksichtigung der Gründung und Brache. Arb. Dtsch. Landwirtsch. Ges. Berl., 98:59–78.

    Google Scholar 

  77. Jones B.D., Nichols W.A., Gibson B.W., Sunshine M.G., and Apicella M.A., 1997, Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect. Immun., 65:4778–4783.

    PubMed  CAS  Google Scholar 

  78. Kloepper J.W. and Beauchamp C.J., 1992, A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol., 38:1219–1232.

    Google Scholar 

  79. Koch B., Nielsen T.H., Sørensen D., Andersen J.B., Christophersen C., Molin S., Givskov, M., Sørensen J., and Nybroe O., 2002, Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudate via the Gac two-component regulatory system. Appl. Environ. Microbiol., 68:4509–4516.

    PubMed  CAS  Google Scholar 

  80. Koster M., van Klompenburg W., Bitter W., Leong J., and Weisbeek P., 1994, Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope. EMBO J., 13:2805–2813.

    PubMed  CAS  Google Scholar 

  81. Kosuge T., Heskett M.G., and Wilson E.E., 1966, Microbial synthesis and degradation of indole-3-acetic acid. J. Biol. Chem., 242:3738–3744.

    Google Scholar 

  82. Kuiper I., 2001, Molecular Characterization of Root Colonizing Pseudomonas strains for Rhizoremediation. PhD Thesis, Leiden, NL.

    Google Scholar 

  83. Kuiper I., Bloemberg G.V., Noreen S., Thomas-Oates J.E., and Lugtenberg B.J.J., 2001, Increased uptake of putrescine inhibits competitive root colonization by Pseudomonas Fluorescens strain WCS365. Mol. Plant Microbe Interact., 14:1096–1104.

    PubMed  CAS  Google Scholar 

  84. Kuiper I., Bloemberg G.V., and Lugtenberg B.J.J., 2001, Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact., 14:1197–1205.

    PubMed  CAS  Google Scholar 

  85. Kuiper I., Kravchenkov L., Bloemberg G.V., and Lugtenberg B.J.J., 2002, Pseudomonas Putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudates components. Mol. Plant Microbe Interact., 15:734–741.

    PubMed  CAS  Google Scholar 

  86. Kuiper I., Lagendijk E.L., and Bloemberg G.V., 2004, Rhizoremediation: A beneficial plant-microbe interaction. Molec. Plant-Microbe Interact. In press.

    Google Scholar 

  87. Lagopodi A.L., Ram A.F.J., Lamers G.E.M., Punt P.J., van den Hondel C.A.M.J.J., Lugtenberg B.J.J., and Bloemberg G.V., 2002, Confocal laser scanning mircoscopical analysis of tomato root colonization and infection by Fusarium oxysporum f. sp. radicislycopersici using the green fluorescent protein as a marker. Mol. Plant Microbe Interact., 15:172–179.

    PubMed  CAS  Google Scholar 

  88. Lam S.T., Ellis D.M., and Ligon J.M., 1990, Genetic approaches for studying rhizosphere colonization. Plant Soil, 129:11–18.

    Google Scholar 

  89. Laville J., Blumer C., Von Shroetter C., Gaia V, Défago, Keel C., and Haas D., 1998, Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHAO.J. Bacteriol., 180:3187–3196.

    PubMed  CAS  Google Scholar 

  90. Lee N., Sunshine M.G., Engstrom J.J., Gibsons B.W., and Apicella M.A., 1995, Mutation of the htrB locus of Haemophilus influenza nontypable strain 2019 is associated with modifications of lipidA and phosphorylation of the lipo-oligosaccharide. J. Biol. Chem., 270:27151–27159.

    PubMed  CAS  Google Scholar 

  91. Lee S.W. and Cooksey D.A., 2000, Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol., 66:2764–2772.

    PubMed  CAS  Google Scholar 

  92. Loh J., Pierson E.A., Pierson III L.S., Stacey G., and Chatterjee A., 2002, Quorum sensing in plant-associated bacteria. Curr. Opin in Plant Biol., 5:285–290.

    CAS  Google Scholar 

  93. Loper J.E., Suslow T.V., and Schroth M.N., 1984, Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology, 74:1454–1460.

    Google Scholar 

  94. Lugtenberg B.J.J., Dekkers L.C., and Bloemberg G.V., 2001, Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol., 39:461–490.

    PubMed  CAS  Google Scholar 

  95. Lugtenberg B.J.J. and Kamilova F.D., 2004, Microbial manipulation for biocontrol and rhizosphere. In Robert M. Goodman (ed) Encyclopedia of Plant and Crop Science. Marcel Dekker. In press.

    Google Scholar 

  96. Lugtenberg B.J.J., Kravchenko L.V., and Simons M., 1999, Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol., 1:439–46.

    PubMed  CAS  Google Scholar 

  97. Lugtenberg B.J.J., and van Alphen L., 1983, Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim. Biophys. Acta. 737:51–115.

    PubMed  CAS  Google Scholar 

  98. Lynch J.M., 1990, The Rhizosphere. John Wiley & Sons Ltd. England.

    Google Scholar 

  99. Mae A., Montesano M., Koiv V., and Palva E.T., 2001, Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol. Plant Microbe Interact., 14:1035–1042.

    PubMed  CAS  Google Scholar 

  100. Mahajan M.S., Tan M.W., Rahme L.G., and Ausubel F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell, 96:47–56.

    Google Scholar 

  101. Maroncle N., Balestrino D., Rich C., and Forestier C., 2002, Identification of Klepsiella Pneumonia genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect of Immun., 70:4729–4734.

    CAS  Google Scholar 

  102. Martindale J., Stroud D., Moxon E.R., and Tang C.M., 2000, Genetic analysis of Escherichia coli Kl gastrointestinal colonization. Mol. Microbiol., 37:1293–1305.

    PubMed  CAS  Google Scholar 

  103. Meharg A.A. and Killham K., 1995, Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil, 170:345–349.

    CAS  Google Scholar 

  104. Merrill S.D., Hava D.L., and Camilli A., 2002, Identification of novel factors involved in colonization and acid tolerance of Vibrio cholera. Mol. Microbiol., 43:1471–1491.

    Google Scholar 

  105. Naseby D.C. and Lynch J.M., 2001, Effect of 2,4-diacetylphloroglucinol producing, overproducing, and nonproducing Pseudomonas fluorescens F113 in the rhizosphere of pea. Microb. Ecol., 42: 193–200.

    PubMed  CAS  Google Scholar 

  106. Neiendam Nielsen M., Sørensen J., Fels J., and Pedersen H.C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic micro fungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol., 64:3563–3569.

    Google Scholar 

  107. Nevola J.J., Stocker B.A.D., Laux D.C., and Cohen P.S., 1995, Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infect. Immun., 50:152–159.

    Google Scholar 

  108. Newman E.I. and Bowen H.J., 1974, Patterns of distribution of bacteria on root surfaces. Soil Biol. Biochem., 6:205–209.

    Google Scholar 

  109. Nielsen T.H., Christopheresen C., Anthoni U., and Sørensen J., 1999, Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol., 87:80–90.

    PubMed  CAS  Google Scholar 

  110. Nielsen T.H., Sørensen D., Tobiasen C., Andersen J.B., Christophersen C., Givskov M., and Sørensen. J., 2002, Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol., 68:3416–3423.

    PubMed  CAS  Google Scholar 

  111. Nielsen T.H., Thrane C., Christophersen C., Anthoni U., and Sørensen J., 2000, Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol., 89:992–1001.

    PubMed  CAS  Google Scholar 

  112. Notz R., Maurhofer M., Dubach H., Haas D., and Défago G., 2002, Fusaric acidproducing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHAO in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol., 68:2229–2235.

    PubMed  CAS  Google Scholar 

  113. Nowak-Thompson B., Chaney N., Wing J.S., Gould S.J., and Loper J.E., 1999, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol., 181:2166–2174.

    PubMed  CAS  Google Scholar 

  114. Nürnberger T. and Brunner F., 2002, Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol., 5:318–324.

    PubMed  Google Scholar 

  115. O’Sullivan J.O. and O’Gara F., 1992, Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev., 56:662–676.

    PubMed  Google Scholar 

  116. O’Toole G.A. and Kolter R., 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol., 28:449–461.

    PubMed  Google Scholar 

  117. Paton A.W., Voss E., Manning P.A., and Paton J.C., 1998, Antibodies to lipopolysaccharide bloc adherence of Shiga toxin-producing Escherichia coli to human intestinal epithelial (Henle 407) cells. Microb. Pathog., 24:57–63.

    PubMed  CAS  Google Scholar 

  118. Perotto S. and Bonfante P., 1997, Bacterial associations with mycorrhizal fungi: Close and distant friends in the rhizosphere. Trends in Microbiol., 5:496–501.

    CAS  Google Scholar 

  119. Pierson E.A., Wood D.W., Cannon J.A., Blachere F.M., and Pierson III L.S., 1998, Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact., 11:1078–1084.

    CAS  Google Scholar 

  120. Piper K.R., Beck von Bodman S., and Farrand K., 1993, Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature, 362:448–450.

    PubMed  CAS  Google Scholar 

  121. Prikryl Z. and Vancura V., 1980, Root exudates of plants VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil, 57:69–83.

    CAS  Google Scholar 

  122. Raaijmakers J.M., van der Sluis I., Koster M., Bakker P.A.H.M., Weisbeek P.J., and Schippers B., 1995, Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol., 41: 126–135.

    CAS  Google Scholar 

  123. Rainey P.B., 1991, Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol., 1:243–257.

    Google Scholar 

  124. Rovira A.D., 1956, A study of the development of the root surface microflora during the initial stages of plant growth. J. Appl. Bacteriol., 19:72–79.

    Google Scholar 

  125. Russo A., Moënne-Loccoz Y., Fedi S., Higgins P., Fenton A., Dowling D.N., O’Regan M., and O’Gara F., 1996, Improved delivery of biocontrol Pseudomonas and their antifungal metabolites using alginate polymers. Appl. Microbiol. Biotechnol., 44:740–745.

    PubMed  CAS  Google Scholar 

  126. Sadowski P., 1986, Site specific recombinases: Changing partners and doing the twist. J. Bacteriol., 165:341–347.

    PubMed  CAS  Google Scholar 

  127. Sánchez-Contreras M., Martín M., Villacieros M., O’Gara F., Bonilla I., and Rivilla R., 2001, Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol., 184:1587–1596.

    Google Scholar 

  128. Savka M.A., Dessaux Y., Oger P., and Rossbach S., 2002, Engineering bacterial competitiveness and persistence in the phytosphere. Mol. Plant-Microbe Interact., 15:866–874.

    PubMed  CAS  Google Scholar 

  129. Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., and Keel C., 2000, Autoinduction of 2,4-Diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol., 182:1215–1225.

    PubMed  CAS  Google Scholar 

  130. Shanahan. P., O’Sullivan D.J., Simpson P., Glennon J.D., and O’Gara F., 1992, Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol., 58:353–358.

    PubMed  CAS  Google Scholar 

  131. Shaw J.J., Dane F., Geiger D., and Kloepper J.W., 1992, Use of bioluminescence for detection of genetically-engineered microbes released into the environment. Appl. Environ. Microbiol., 58:267–273.

    PubMed  CAS  Google Scholar 

  132. Simon H., Smith K.P., Dodsworth J.E., Guenthner B., Handelsman J., and Goodman, R.M., 2000, Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl. Environ. Microbiol., 67:514–520.

    Google Scholar 

  133. Simons M., Permentier H.P., de Weger L.A., Wijffelman C.A., and Lugtenberg B.J.J., 1997, Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Int., 10:102–106.

    CAS  Google Scholar 

  134. Simons M., van der Bij A.J., Brand J., de Weger L.A., Wijffelman C.A., and Lugtenberg, B.J.J., 1996, Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact., 9:600–607.

    PubMed  CAS  Google Scholar 

  135. Smith K.D. and Ozinsky A., 2002, Toll-like receptor-5 and the innate immune response to bacterial flagellin. Curr. Top Microbiol. Immunol., 270:93–108.

    PubMed  CAS  Google Scholar 

  136. Smith L.M., Tola E., deBoer P., and O’Gara F., 1999, Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens Fl13. Environ. Microbiol., 1:495–502.

    PubMed  CAS  Google Scholar 

  137. Spaink H.P., Kondorosi A., and Hooykaas P.J.J., 1998, The Rhizobiaeceae. Kluwer Academic Publishers Dordrecht, The Netherlands.

    Google Scholar 

  138. Stanghellini M.E. and Rasmussen S.L., 1994, Hydroponics: A solution for zoosporic pathogens. Plant Dis., 80:422–428.

    Google Scholar 

  139. Streit W.R. and Phillips D.A., 1997, A biotin-regulated locus, bioS, in a possible survival operon of rhizobium meliloti. Mol. Plant-Microbe Interact., 10:933–937.

    PubMed  CAS  Google Scholar 

  140. Tan M.-W., Rahme L.G., Sternberg J.A., Tompkins R.G., and Ausubel E.M., 1999, Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify, Raeruginosa virulence factors. Proc. Natl. Acad. Sci., USA 96:2408–2413.

    PubMed  CAS  Google Scholar 

  141. Teplitski M., Robinson J.B., and Bauer W.D., 2000, Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact., 13:637–648.

    PubMed  CAS  Google Scholar 

  142. Thomashow L.S. and Weller D.M., 1996, Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. In G. Stacey, and N.T. Keen, (eds) Plant-Microbe Interact., Vol 1. pp. 187–235.

    Google Scholar 

  143. Thrane C., Harder Nielsen T., Neiendam Nielsen M., Sørensen J., and Olson S., 2000, Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol., 33: 139–146.

    PubMed  CAS  Google Scholar 

  144. Timms-Wilson T.M., Ellis R.J., Renwick A., Rhodes D.J., Mavrodi D.V., Weller D.M., Tomashow L.S., and Bailey M.J., 2000, Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol. Plant Microbe Interact., 13:1293–1300.

    PubMed  CAS  Google Scholar 

  145. Tombolini R., van der Gaag D.J., Gerhardson B., and Jansson J.K., 1999, Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol., 65:3674–3680.

    PubMed  CAS  Google Scholar 

  146. Toro M., Azcon R., and Barea J., 1997, Improvement of arbuscular mycorrhizae development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (sup32)P and nutrient cycling. Appl. Environ. Microbiol. 63:4408–4412.

    PubMed  CAS  Google Scholar 

  147. Toyota K. and Kimura M., 1993, Colonization of chlamydospores of Fusarium oxysporum f. sp. raphani by soil bacteria and their effects on germination. Soil Biol. Biochem., 25:193–197.

    Google Scholar 

  148. Troxler J., Azelvandre P., Zala M., Défago G., and Haas D., 1997, Conjugative transfer of chromosomal genes between fluorescent pseudomonads in the rhizosphere of wheat. Appl. Environ. Microbiol., 63:213–219.

    PubMed  CAS  Google Scholar 

  149. Underhill D.M. and Ozinsky A., 2002, Toll-like receptors: Key mediators of microbe detection. Curr. Opin. Immunol., 14:103–110.

    PubMed  CAS  Google Scholar 

  150. Unge A., Tombolini R., Mølbak L., and Jansson J., 1999, Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-IuxAB marker system. Appl. Environ. Microbiol., 65:813–821.

    PubMed  CAS  Google Scholar 

  151. Vancura V., 1964, Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil, 21:231–248.

    Google Scholar 

  152. Vancura V., 1967, Root exudates of plants. III. Effect of temperature and’ cold shock ‘on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant Soil, 27:319–328.

    CAS  Google Scholar 

  153. Vancura V. and Hanzlikova A., 1972, Root exudates of plant IV. Difference in chemical composition of seed and seedlings exudates. Plant Soil, 36:271–282.

    CAS  Google Scholar 

  154. Vancura V. and Hovadik A., 1965, Root exudates of plants II. Composition of root exudates of some vegetables. Plant Soil, 22:21–32.

    CAS  Google Scholar 

  155. Vancura V. and Stanek M., 1975, Root exudates of plants, V. Kinetics of exudates from bean roots as related to the presence of reserve compounds in cotyledons. Plant Soil, 43:547–559.

    CAS  Google Scholar 

  156. Van den Broek D., Chin-A-Woeng T.F.C., Eijckemans K., Mulders I.H.M., Bloemberg, G.V., and Lugtenberg B.J.J., 2003, Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Molec. Plant-Microbe Interact. 16:1003–1012.

    Google Scholar 

  157. Van Elsas J.D., Trevors J.T., and Starodub M.E., 1998, Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Lett., 53:299–306.

    Google Scholar 

  158. Van Loon L.C., Bakker P.A.H.M., and Pieterse C.M.J., 1998, Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 36:453–483.

    PubMed  Google Scholar 

  159. Wang C., Knill E., Glick B.R., and Défago G., 2000, Effect of transferring 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities., 46:898–907.

    CAS  Google Scholar 

  160. Weller DM., 1988, Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol., 26:379–407.

    Google Scholar 

  161. Whistler C.A., Corbell N.A., Sarniguet A., Ream W., and Loper J.E., 1998, The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. J. Bacteriol., 180:6635–6641.

    PubMed  CAS  Google Scholar 

  162. Whistler C.A., Stockwell V.O., and Loper J.E., 2000, Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol., 66:2718–2725.

    PubMed  CAS  Google Scholar 

  163. Winans S.C. and Bassler B.L., 2002, Mob psychology. J. Bacteriol., 184:873–883.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lugtenberg, B.J.J., Bloemberg, G.V. (2004). Life in the Rhizosphere. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics