Skip to main content

Adaptations in Titin’s Spring Elements in Normal and Cardiomyopathic Hearts

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Abstract

Titin (also known as connectin) is a giant elastic protein located in the striated-muscle sarcomere where it spans from Z-line to M-line. A large part of the I-band region of the titin molecule is extensible and functions as a molecular spring that underlies passive muscle stiffness when sarcomeres are stretched. This spring has a complex composition. In cardiac titin it consists of three extensible elements: tandem Ig segments, the PEVK segment and the N2B unique sequence. Here we discuss our recent work focused on understanding the molecular basis of titin’s extensibility and in which force-extension curves were measured by using an atomic force microscope specialized for stretching single molecules. We will discuss results from recombinant proteins that represent the various elements of titin’s extensible region. The obtained single molecule mechanical characteristics of titin’s various spring elements explain well their measured extension in the cardiac sarcomere when stretched within their physiological length range. We also examined how titin’s contribution to passive muscle stiffness may be adjusted. We discuss evidence that suggests that calcium/S100 may adjust titin-based stiffness and that phosphorylation of cardiac titin’s N2B spring elements reduces titin-based passive stiffness in cardiac muscle. Finally, we show that the cardiac sarcomere of large mammals co-expresses titin isoforms and that differential splicing of titin’s spring elements is a long-term mechanism of adjustment, which plays a role in passive stiffness modulation during heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.C. Gregorio, H. Granzier, H. Sorimachi, and S. Labeit, Muscle assembly: a titanic achievement?, Curr Opin Cell Biol 11, 18–25. (1999).

    Article  PubMed  CAS  Google Scholar 

  2. L. Tskhovrebova, and J. Trinick, Role of titin in vertebrate striated muscle, Philos Trans R Soc Lond B Biol Sci 357, 199–206 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. K. Wang, Cytoskeletal matrix in striated muscle: the role of titin, nebulin and intermediate filaments, Adv Exp Med Biol 170, 285–305 (1984).

    Google Scholar 

  4. K. Maruyama, Connectin/titin, giant elastic protein of muscle, FASEB J 11, 341–345. (1997).

    PubMed  CAS  Google Scholar 

  5. W. A. Linke, Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle, Histol Histopathol 15, 799–811 (2000).

    PubMed  CAS  Google Scholar 

  6. H. Granzier, and S. Labeit, Cardiac titin: an adjustable multi-function spring, Journal of Physiology (London) 541, 335–342 (2002).

    Article  CAS  Google Scholar 

  7. K. Wang, Titin/connectin and nebulin: giant protein rulers of muscle structure and function, Adv Biophys 33, 123–134 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. S. Improta, A. S. Politou, and A. Pastore, Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity, Structure 4, 323–337. (1996).

    Article  PubMed  CAS  Google Scholar 

  9. S. Labeit, and B. Kolmerer, Titins: giant proteins in charge of muscle ultrastructure and elasticity, Science 270, 293–296 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. A. Freiburg, K. Trombitas, W. Hell, O. Cazorla, F. Fougerousse, T. Centner, B. Kolmerer, C. Witt, J. S. Beckmann, C. C. Gregorio, H. Granzier, and S. Labeit, Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity, Circ Res 86, 1114–1121. (2000).

    Article  PubMed  CAS  Google Scholar 

  11. K. Trombitas, M Greaser, S. Labeit, J. P. Jin, M Kellermayer, M. Helmes, and H. Granzier, Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments, J Cell Biol 140, 853–859 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. W. A Linke, and H. Granzier, A spring tale: new facts on titin elasticity, Biophys J 75, 2613–2614. (1998).

    Article  PubMed  CAS  Google Scholar 

  13. W. A Linke, M. R. Stockmeier, M. Ivemeyer, H. Hosser, and P. Mündel, Characterizing titin’s I-band 1g domain region as an entropic spring, J Cell Sci 111( Pt 11), 1567–1574 (1998).

    PubMed  CAS  Google Scholar 

  14. W. A Linke, M. Ivemeyer, P. Mündel, M. R. Stockmeier, and B. Kolmerer, Nature of PEVK-titin elasticity in skeletal muscle, Proc Natl Acad Sci U S A 95, 8052–8057 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. L. Tskhovrebova, and J. Trinick, Flexibility and extensibility in the titin molecule: analysis of electron microscope data, J Mol Biol 310, 755–771. (2001).

    Article  PubMed  CAS  Google Scholar 

  16. A. Minajeva, M. Kulke, J. M. Fernandez, and W. A. Linke, Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils, Biophys J 80, 1442–1451. (2001).

    Article  PubMed  CAS  Google Scholar 

  17. K. Trombitas, M. Greaser, S. Labeit, J. P. Jin, M. Kellermayer, M. Helmes, and H. Granzier, Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments, J Cell Biol 140, 853–859. (1998).

    Article  PubMed  CAS  Google Scholar 

  18. K. Trombitas, M. Greaser, G. French, and H. Granzier, PEVK extension of human soleus muscle titin revealed by immunplabeling with the anti-titin antibody 9D10, J Struct Biol 122, 188–196 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. K. Ma, L. Kan, and K. Wang, Polyproline II helix is a key structural motif of the elastic PEVK segment of titin, Biochemistry 40, 3427–3438. (2001).

    Article  CAS  Google Scholar 

  20. H. Li, A. F. Oberhäuser, S. D. Redick, M. Carrion-Vazquez, H. P. Erickson, and J. M. Fernandez, Multiple conformations of PEVK proteins detected by single-molecule techniques, Proc Natl Acad Sci U S A 98, 10682–10686.(2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. F. Marko, and E. D. Siggia, Fluctuations and supercoiling of DNA, Science 265, 506–508 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Entropie elasticity of lambda-phage DNA, Science 265, 1599–1600 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. M. Helmes, K. Trombitas, T. Centner, M. Kellermayer, S. Labeit, W. A. Linke, and H. Granzier, Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring, Circ Res 84, 1339–1352. (1999).

    Article  PubMed  CAS  Google Scholar 

  24. K. Trombitas, A. Freiburg, T. Centner, S. Labeit, and H. Granzier, Molecular dissection of N2B cardiac titin’s extensibility, Biophys J 77, 3189–3196. (1999).

    Article  PubMed  CAS  Google Scholar 

  25. K. Watanabe, P. Nair, D. Labeit, M. S. Kellermayer, M. Greaser, S. Labeit, and H. Granzier, Molecular mechanics of cardiac titin’s PEVK and N2B spring elements, J Biol Chem 277, 11549–11558 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. M. Carrion-Vazquez, P. E. Marszalek, A. F. Oberhauser, and J. M. Fernandez, Atomic force microscopy captures length phenotypes in single proteins, Proc Natl Acad Sci U S A 96, 11288–11292. (1999).

    Article  PubMed  CAS  Google Scholar 

  27. M. Carrion-Vazquez, A. F. Oberhauser, S. B. Fowler, P. E. Marszalek, S. E. Broedel, J. Clarke, and J. M. Fernandez, Mechanical and chemical unfolding of a single protein: a comparison, Proc Natl Acad Sci U S A 96, 3694–3699. (1999).

    Article  PubMed  CAS  Google Scholar 

  28. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109–1112. (1997).

    Article  PubMed  CAS  Google Scholar 

  29. P. E. Marszalek, H. Lu, H. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten, and J. M. Fernandez, Mechanical unfolding intermediates in titin modules, Nature 402, 100–103. (1999).

    Article  PubMed  CAS  Google Scholar 

  30. K. Watanabe, C. Muhle-Goll, M. S. Kellermayer, S. Labeit, and H. Granzier, Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments, J Struct Biol 137, 248–258 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. M. Carrion-Vazquez, A. F. Oberhauser, T. E. Fisher, P. E. Marszalek, H. Li, and J. M. Fernandez, Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering, Prog Biophys Mol Biol 74, 63–91 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. R. Yamasaki, M. Bern, Y. Wu, K. Trombitas, M. McNabb, M. S. Kellermayer, C. Witt, D. Labeit, S. Labeit, M. Greaser, and H. Granzier, Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100Al, Biophys J 81, 2297–2313 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. M. Kulke, S. Fujita-Becker, E. Rostkova, C. Neagoe, D. Labeit, D. J. Manstein, M. Gautel, and W. A. Linke, Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils, Circ Res 89, 874–881 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. W. Kabsch, H. G. Mannherz, D. Suck, E. F. Pai, and K. C. Holmes, Atomic structure of the actin:DNase I complex, Nature 347, 37–44. (1990).

    Article  PubMed  CAS  Google Scholar 

  35. G. Fulgenzi, L. Graciotti, A. L Granata, A. Corsi, P. Fucini, A. A. Noegel, H. M. Kent, and M. Stewart, Location of the binding site of the mannose-specific lectin comitin on F-actin, J Mol Biol 284, 1255–1263. (1998).

    Article  PubMed  CAS  Google Scholar 

  36. E. Friederich, K. Vancompemolle, C. Huet, M. Goethals, J. Finidori, J. Vandekerckhove, and D. Louvard, An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin, Cell 70, 81–92. (1992).

    Article  PubMed  CAS  Google Scholar 

  37. M. Pfuhl, S. J. Winder, and A Pastore, Nebulin, a helical actin binding protein, Embo J 13, 1782–1789. (1994).

    PubMed  CAS  Google Scholar 

  38. R. Yamasaki, Y. Wu, M. McNabb, M. Greaser, S. Labeit, and H. Granzier, Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes, Circ Res 90, 1181–1188 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. K. T. Strang, N. K. Sweitzer, M. L. Greaser, and R. L. Moss, Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats, Circ Res 74, 542–549. (1994).

    Article  PubMed  CAS  Google Scholar 

  40. R. J. Solaro, A. J. Moir, and S. V. Perry, Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart, Nature 262, 615–617 (1976).

    Article  PubMed  CAS  Google Scholar 

  41. H. C. Hartzell, and D. B. Glass, Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases, J Biol Chem 259, 15587–15596 (1984).

    PubMed  CAS  Google Scholar 

  42. K. T. Strang, and R. L. Moss, Alpha 1-adrenergic receptor stimulation decreases maximum shortening velocity of skinned single ventricular myocytes from rats, Circ Res 77, 114–120 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. M. L. Bang, T. Centner, F. Fornoff, A J. Geach, M. Gotthardt, M. McNabb, C. C. Witt, D. Labeit, C. C. Gregorio, H. Granzier, and S. Labeit, The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system, Circ Res 89, 1065–1072 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. M. Greaser, Identification of new repeating motifs in titin, Proteins 43, 145–149. (2001).

    Article  PubMed  CAS  Google Scholar 

  45. O. Cazorla, A. Freiburg, M. Helmes, T. Centner, M. McNabb, Y. Wu, K. Trombitas, S. Labeit, and H. Granzier, Differential expression of cardiac titin isoforms and modulation of cellular stiffness, Circ Res 86, 59–67. (2000).

    Article  PubMed  CAS  Google Scholar 

  46. R. Horowits, and R. J. Podolsky, The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments, J Cell Biol 105, 2217–2223 (1987).

    Article  PubMed  CAS  Google Scholar 

  47. M. Helmes, K. Trombitas, and H. Granzier, Titin develops restoring force in rat cardiac myocytes, Circ Res 79, 619–626 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. H. Granzier, M. Kellermayer, M. Helmes, and K. Trombitas, Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction, Biophys J 73, 2043–2053. (1997).

    Article  PubMed  CAS  Google Scholar 

  49. H. Granzier, M. Helmes, O. Cazorla, M. McNabb, D. Labeit, Y. Wu, R. Yamasaki, A. Redkar, M. Kellermayer, S. Labeit, and K. Trombitas, Mechanical properties of titin isoforms, Adv Exp Med Biol 481, 283–300 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. W. A Linke, M. Ivemeyer, S. Labeit, H. Hinssen, J. C. Ruegg, and M. Gautel, Actin-titin interaction in cardiac myofibrils: probing a physiological role, Biophys J 73, 905–919. (1997).

    Article  PubMed  CAS  Google Scholar 

  51. K. Trombitas, Y. Wu, D. Labeit, S. Labeit, and H. Granzier, Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently, Am J Physiol Heart Circ Physiol 281, H1793–1799 (2001).

    PubMed  CAS  Google Scholar 

  52. S. Labeit, and B. Kolmerer, Titins: giant proteins in charge of muscle ultrastructure and elasticity, Science 270, 293–296. (1995).

    Article  PubMed  CAS  Google Scholar 

  53. S. Hein, and J. Schaper, Pathogenesis of dilated cardiomyopathy and heart failure: insights from cell morphology and biology, Curr Opin Cardiol 11, 293–301. (1996).

    Article  PubMed  CAS  Google Scholar 

  54. S. Hein, D. Scholz, N. Fujitani, H. Rennollet, T. Brand, A. Friedl, and J. Schaper, Altered expression of titin and contractile proteins in failing human myocardium, J Mol Cell Cardiol 26, 1291–1306. (1994).

    Article  PubMed  CAS  Google Scholar 

  55. I. Morano, K. Hadicke, S. Grom, A. Koch, R. H. Schwinger, M. Bohm, S. Bartel, E. Erdmann, and E. G. Krause, Titin, myosin light chains and C-protein in the developing and failing human heart, J Mol Cell Cardiol 26, 361–368. (1994).

    Article  PubMed  CAS  Google Scholar 

  56. B. L. Siu, H. Niimura, J. A. Osbome, D. Fatkin, C. MacRae, S. Solomon, D. W. Benson, J. G. Seidman, and C. E. Seidman, Familial dilated cardiomyopathy locus maps to chromosome 2q31, Circulation 99, 1022–1026. (1999).

    Article  PubMed  CAS  Google Scholar 

  57. M. Itoh-Satoh, T. Hayashi, H. Nishi, Y. Koga, T. Arimura, T. Koyanagi, M. Takahashi, S. Hohda, K. Ueda, T. Nouchi, M. Hiroe, F. Marumo, T. Imaizumi, M Yasunami, and A. Kimura, Titin Mutations as the Molecular Basis for Dilated Cardiomyopathy, Biochem Biophys Res Commun 291, 385–393 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. B. Gerull, M. Gramlich, J. Atherton, M. McNabb, K. Trombitas, S. Sasse-Klaassen, J. G. Seidman, C. Seidman, H. Granzier, S. Labeit, M. Frenneaux, and L Thierfelder, Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy, Nat Genet 30, 201–204. (2002).

    Article  PubMed  CAS  Google Scholar 

  59. X. Xu, S. E. Meiler, T. P. Zhong, M. Mohideen, D. A Crossley, W. W. Burggren, and M. C Fishman, Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin, Nat Genet 30, 205–209 (2002).

    PubMed  CAS  Google Scholar 

  60. P. Hackman, A. Vihola, H. Haravuori, S. Marchand, J. Sarparanta, J. De Seze, S. Labeit, C. Witt, L Peltonen, I. Richard, and B. Udd, Tibial Muscular Dystrophy Is a Titinopathy Caused by Mutations in TTN, the Gene Encoding the Giant Skeletal-Muscle Protein Titin, Am J Hum Genet 71, 492–500 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. T. Centner, J. Yano, E. Kimura, A. S. McElhinny, K. Pelin, C. C. Witt, M. L. Bang, K. Trombitas, H. Granzier, C. C. Gregorio, H. Sorimachi, and S. Labeit, Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain, J Mol Biol 306, 717–726 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. M. Gotthardt, R. E. Hammer, N. Hubner, J. Monti, C. C. Witt, M. McNabb, J. A. Richardson, H. Granzier, S. Labeit, and J. Herz, Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure, J Biol Chem (2002).

    Google Scholar 

  63. Y. Wu, S. P. Bell, K. Trombitas, C. C. Witt, S. Labeit, M. M. Le Winter, and H. Granzier, Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness, Circulation 106, 1384–1389 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. Y. Wu, S. Bell, M. M. Le Winter, S. Labeit, and H. Granzier, Titin: an endosarcomeric protein that modulates myocardial stiffness., Journal of Cardiac Failure 8, S276–S286 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. C. Neagoe, M. Kulke, F. del Monte, J. K. Gwathmey, P. P. de Tombe, R. J. Hajjar, and W. A. Linke, Titin isoform switch in ischémie human heart disease, Circulation 106, 1333–1341 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Granzier, H. et al. (2003). Adaptations in Titin’s Spring Elements in Normal and Cardiomyopathic Hearts. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics