Skip to main content

Inter-Sarcomere Dynamics in Muscle Fibres

A neglected subject?

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

Abstract

The sarcomere is the functional unit of muscle, and all sarcomeres are connected in series in myofibrils within a muscle fibre. From this point of view of the structure a single model consisting of a contractile, a series and a parallel element can not account for the description of a real muscle fibre. Additionally, the titin protein filament needs to be considered as a passive visco-elastic element in parallel with the contractile apparatus. Therefore, the structure of a single muscle fibre is complex due mechanical elements (“motors”) operating in series and in parallel. Moreover, variability does exist in the mechanical properties along a fibre and hence a multi-segmental model is more realistic and would give rise to many new insights. By attributing a segment model to each half-sarcomere, a fibre can be constructed through rigorous coupling of these units in series and parallel. The dynamics of such a multi-segmental model is much more complex, but it can explain a variety of effects reported in standard classical mechanics experiments.

With a relatively simple mechanistic description we can show that the dynamics of such multi-sarcomere systems exhibit a variety of effects (relaxation phenomena, permanent extra-tension, biphasic force-velocity relation) and should therefore not be neglected in muscle fibre modelling. We have observed in single skinned fibre experiments that non-uniformities in sarcomere length changes are prominent during activation and relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allinger, T. L, Epstein, M., and Herzog, W., 1996, Stability of muscle fibers on the descending limb of the force-length relation. A theoretical consideration, J Biomech, 29(5):627–33.

    Article  PubMed  CAS  Google Scholar 

  • Colomo, F., Piroddi, N., Poggesi, C, te Kronnie, G., and Tesi, G, 1997, Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog, J Physiol, 500( Pt 2):535–48.

    PubMed  CAS  Google Scholar 

  • Denoth, J., Stussi, E., Csucs, G., and Danuser, G., 2002, Single muscle fiber contraction is dictated by inter-sarcomere dynamics, J Theor Biol. 216(l):101–122.

    Article  PubMed  Google Scholar 

  • Edman, K. A., 1988, Double-hyperbolic force-velocity relation in frog muscle fibres, J Physiol. 404:301–21.

    PubMed  CAS  Google Scholar 

  • Edman, K. A., Mansson, A., and Caputo, C, 1997, The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function, J Physiol. 503( Pt l):141–56.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, A. L, and Goldman, Y. E., 1996, Mechanical characterization of skeletal muscle myofibrils, Biophys J, 71(5):2774–85.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Huxley, A. F., and Julian, F. J., 1966, The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J Physiol. 184(1): 170–92.

    PubMed  CAS  Google Scholar 

  • Granzier, H. L, and Pollack, G. H., 1989, Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres, J Physiol, 415:299–327.

    PubMed  CAS  Google Scholar 

  • Herzog, W., and Leonard, T. R., 2000, The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles, J Biomech, 33(5):531–42.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V., 1938, The heat of shortening and the dynamic constants of muscle, Proc R Soc B, 126(843): 136–195.

    Article  Google Scholar 

  • Hill, A. V., 1953, The mechanics of active muscle, Proc R Soc B, 141(902): 104–117.

    Article  CAS  Google Scholar 

  • Hill, A. V., 1970, First and Last Experiments in Muscle Physiology. Cambridge University Press, London, New York.

    Google Scholar 

  • Horowits, R., and Podolsky, R. J., 1987, The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments, J Cell Biol. 105(5):2217–23.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F., 1957, Muscle structure and theories of contraction, Prog Biophys Mol Biol. 7:255–318.

    CAS  Google Scholar 

  • Julian, F. J., and Morgan, D. L., 1979a, The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres, J Physiol. 293: 379–92.

    PubMed  CAS  Google Scholar 

  • Julian, F. J., and Morgan, D. L., 1979b, Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibres, J Physiol. 293:365–78.

    PubMed  CAS  Google Scholar 

  • Katz, B., 1939, The relationship between force and speed in muscular contraction, J Physiol (Lond), 96:45–64.

    CAS  Google Scholar 

  • Kellermayer, M. S., Smith, S. B., Granzier, H. L, and Bustamante, G, 1997, Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science, 276(5315): 1112–6.

    Article  PubMed  CAS  Google Scholar 

  • Linke, W. A., Popov, V. I., and Pollack, G. H., 1994, Passive and active tension in single cardiac myofibrils, Biophys J, 67(2):782–92.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, V., and Piazzesi, G., 1990, The contractile response during steady lengthening of stimulated frog muscle fibres, J Physiol, 431:141–71.

    PubMed  CAS  Google Scholar 

  • Minajeva, A., Neagoe, G, Kulke, M., and linke, W. A., 2002, Titin-based contribution to shortening velocity of rabbit skeletal myofibrils, J Physiol, 540(Pt l):177–88.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. L, 1990, New insights into the behavior of muscle during active lengthening, Biophys J, 57(2):209–21.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. L, 1994, An explanation for residual increased tension in striated muscle after stretch during contraction, Exp Physiol, 79(5):831–8.

    PubMed  CAS  Google Scholar 

  • Pollack, G. H., 1990, Muscle & Molecules. Ebner & Sons Publishers.

    Google Scholar 

  • Ranatunga, K. W., 2001, Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest, J Muscle Res Cell Motil, 22(5):399–414.

    Article  PubMed  CAS  Google Scholar 

  • Shah, S. B., Su, F. C, Jordan, K., Milner, D. J., Friden, J., Capetanaki, Y., and Lieber, R. L, 2002, Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle, J Exp Biol, 205(Pt 3):321–5.

    PubMed  Google Scholar 

  • Sugi, H., and Tsuchiya, T., 1998, Muscle mechanics I: Intact single muscle fibres, in: Current Methods in Muscle Physiology: Advantages, Problems, and Limitations (H. Sugi, ed.), Oxford University Press, Oxford; New York; Tokyo, pp. 3–31.

    Chapter  Google Scholar 

  • Trombitas, K., Greaser, M, Labeit, S., Jin, J. P., Kellermayer, M., Helmes, M., and Granzier, H., 1998, Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments, J Cell Biol, 140(4):853–9.

    Article  PubMed  CAS  Google Scholar 

  • Woledge, R. C, Curtin, N. A., and Homsher, E., 1985, Energetic aspects of muscle contraction, Monogr Physiol Soc, 41:1–357.

    PubMed  CAS  Google Scholar 

  • Zahalak, G. I., 1997, Can muscle fibers be stable on the descending limbs of their sarcomere length-tension relations?, J Biomech, 30(11-12): 1179–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Telley, I.A., Denoth, J., Ranatunga, K.W. (2003). Inter-Sarcomere Dynamics in Muscle Fibres. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics