Skip to main content

Hypoxia and Rho/Rho-Kinase Signaling

Lung development versus hypoxic pulmonary hypertension

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Intracellular signaling via the small GTP-binding protein RhoA and its downstream effector Rho-kinase plays a role in regulating diverse cellular functions, including cell contraction, migration, gene expression, proliferation, and differentiation. Rho/Rho-kinase signaling has an obligatory role in embryonic cardiac development, and low-level chemical activation of Rho promotes branching morphogenesis in fetal lung explants. Gebb has found that hypoxia markedly augments branching morphogenesis in fetal rat lung expiants, and our preliminary results suggest this is associated with activation of RhoA. Whereas hypoxia-induced activation of Rho/Rho-kinase may promote fetal lung development, other evidence indicates it has adverse effects in the lungs of neonates and adults. When exposed at birth to the mild hypoxia of Denver’s altitude (5, 280 ft), the neonatal fawn-hooded rat (FHR) develops severe pulmonary hypertension (PH) associated with impaired lung alveo-larization and vascularization. We have observed that administration via the drinking water of the Rho-kinase inhibitor fasudil to the nursing, Denver FHR mother for the first 2 to 3 weeks, and then directly to the Denver FHR pups for the next 7 to 8 weeks, ameliorates the lung dysplasia and PH. The adult Sprague-Dawley rat develops PH when exposed for 3 to 4 wk to a simulated altitude of 17, 000 ft. We have found that this hypoxic PH is associated with activation of pulmonary artery Rho/Rho-kinase and is almost completely reversed by acute intravenous administration of the Rho-kinase inhibitor Y-27632. In addition, chronic in vivo treatment with Y-27632 reduces development of the hypoxic PH. In summary, hypoxic activation of Rho/Rho-kinase signaling may be important for fetal lung morphogenesis, but continued activation of this pathway in the neonate impairs postnatal lung development and re-activation in the adult contributes to development of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano M, Fukata Y, and Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res 261: 44–51, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Bishop AL, and Hall A. Rho GTPases and their effector proteins. Biochem J 348: 241–255, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Burri PH. Fetal and postnatal development of the lung. Annu Rev Physiol 46: 617–628, 1984.

    Article  CAS  PubMed  Google Scholar 

  4. Chen YF, and Oparil S. Endothelial dysfunction in the pulmonary vascular bed. Am J Med Sci 320: 223–232, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Damron DS, Kanaya N, Homma Y, Kim S-O, and Murray PA. Role of PKC, tyrosine kinases, and Rho kinase in alpha-adrenoreceptor-mediated PASM contraction. Am J Physiol Lung Cell Mol Physiol 283: L1051–1064, 2002.

    Google Scholar 

  6. DeVries WC, Seaber AV, and Sealy WC. Unilateral pulmonary emphysema created by ligation of the left pulmonary artery in newborn puppies. Ann Thorac Surg 27: 154–160, 1979.

    Article  CAS  PubMed  Google Scholar 

  7. Essler M, Staddon JM, Weber PC, and Aepfelbacher M. Cyclic AMP blocks bacterial lipopoly-saccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J Immunol 164: 6543–6549, 2000.

    CAS  PubMed  Google Scholar 

  8. Etienne-Manneville S, and Hall A. Rho GTPases in cell biology. Nature 420: 629–635, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Fagan KA, Oka M, and McMurtry IF. Rho-kinase inhibitor (Y27632) attenuates the development of hypoxia-induced pulmonary hypertension in mice (Abstract). Am J Respir Cell Mol Biol 165: B53, 2002.

    Google Scholar 

  10. Fukata Y, Amano M, and Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22: 32–39, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Gohla A, Schultz G, and Offermanns S. Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ Res 87: 221–227, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Gong MC, Fujihara H, Somlyo AV, and Somlyo AP. Translocation of rhoA associated with Ca sensitization of smooth muscle. J Biol Chem 272: 10704–10709, 1997.

    Article  CAS  PubMed  Google Scholar 

  13. Haworth SG, de Levai M, and Macartney FJ. Hypoperfusion and hyperperfusion in the immature lung. Pulmonary arterial development following ligation of the left pulmonary artery in the newborn pig. J Thorac Cardiovasc Surg 82: 281–292, 1981.

    CAS  PubMed  Google Scholar 

  14. Haworth SG, McKenzie SA, and Fitzpatrick ML. Alveolar development after ligation of left pulmonary artery in newborn pig: clinical relevance to unilateral pulmonary artery. Thorax 36: 938–943, 1981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Herget J, Suggett AJ, Leach E, and Barer GR. Resolution of pulmonary hypertension and other features induced by chronic hypoxia in rats during complete and intermittent normoxia. Thorax 33: 468–473, 1978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hernandez-Perera O, Perez-Sala D, Soria E, and Lamas S. Involvement of Rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res 87: 616–622, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Hoeper MM, Galie N, Simonneau G, and Rubin LJ. New treatments for pulmonary arterial hypertension. Am J Respir Crit Care Med 165: 1209–1216, 2002.

    Article  PubMed  Google Scholar 

  18. Janssen LJ, Lu-Chao H, and Netherton S. Excitation-contraction coupling in pulmonary vascular smooth muscle involves tyrosine kinase and Rho kinase. Am J Physiol Lung Cell Mol Physiol 280: L666–674, 2001.

    CAS  PubMed  Google Scholar 

  19. Jeffery TK, and Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther 92: 1–20, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Kitazawa T, Eto M, Woodsome TP, and Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem 275: 9897–9900, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, and Nakano T. Phos-phorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 475: 197–200, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Le Cras TD, Kim DH, Gebb S, Markham NE, Shannon JM, Tuder RM, and Abman SH. Abnormal lung growth and the development of pulmonary hypertension in the Fawn-Hooded rat. Am J Physiol 277: L709–718, 1999.

    PubMed  Google Scholar 

  23. Le Cras TD, Kim DH, Markham NE, and Abman AS. Early abnormalities of pulmonary vascular development in the Fawn-HooMed rat raised at Denver’s altitude. Am J Physiol Lung Cell Mol Physiol 279: L283–291, 2000.

    PubMed  Google Scholar 

  24. Lee MR, Li L, and Kitazawa T. Cyclic GMP causes Ca 2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem 272: 5063–5068, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Landerholm TE, Wei JS, Dong X-R, Wu S-P, Liu X, Nagata K-i, Inagaki M, and Majesky MW. Coronary Smooth Muscle Differentiation from Proepicardial Cells Requires RhoA-Mediated Actin Reorganization and pi60 Rho-Kinase Activity. Developmental Biology 240: 404–418, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Massaro GD, Olivier J, Dzikowski C, and Massaro D. Postnatal development of lung alveoli: suppression by 13% 02 and a critical period. Am J Physiol Lung Cell Mol Physiol 258: L321-327, 1990.

    CAS  Google Scholar 

  27. Massaro GD, and Massaro D. Formation of Pulmonary Alveoli and Gas-Exchange Surface Area: Quantitation and Regulation. Annu Rev Physiol 58: 73–92, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Meyrick B, and Reid L. Pulmonary arterial and alveolar development in normal postnatal rat lung. Am Rev Respir Dis 125: 468–473, 1982.

    CAS  PubMed  Google Scholar 

  29. Moon SY, and Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13: 13–22, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Moore KA, Huang S, Kong Y, Sunday ME, and Ingber DE. Control of Embryonic Lung Branching Morphogenesis by the Rho Activator, Cytotoxic Necrotizing Factor 1. Journal of Surgical Research 104: 95–100, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Morio Y, Muramatsu M, Takahashi K, Teramoto S, Oka T, and Fukuchi Y. Distal airspace en-largement in the fawn-hooded rat: influences of aging and alveolar wall destruction. Respiration 68: 78–86, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Morio Y, and McMurtry IF. Ca(2+) release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs. J Appl Physiol 92: 527–534, 2002.

    CAS  PubMed  Google Scholar 

  33. Morio Y, Oka M, and McMurtry IF. A selective Rho-kinase inhibitor, Y-27632, is an effective vasodilator of chronically hypoxic hypertensive rat lungs (Abstract). Faseb J 16: A74, 2002.

    Google Scholar 

  34. Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, and Fukuchi Y. Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol 127: 53–60, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Niiro N, Koga Y, and Ikebe M. Agonist-induced changes in the phosphorylation of the myo-sinbinding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem J 369: 117–128, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Oka M, Morris KG, and McMurtry IF. NIP-121 is more effective than nifedipine in acutely reversing chronic pulmonary hypertension. J Appl Physiol 75: 1075–1080, 1993.

    CAS  PubMed  Google Scholar 

  37. Oka M, Morio Y, Morris KG, and McMurtry I. Acute hemodynamic effects of Y27632, a selective Rho-kinase inhibitor, in chronically hypoxic pulmonary hypertensive rats (Abstract). Faseb J 16: A74, 2002.

    Google Scholar 

  38. Pfltzer G. Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 91: 497–503, 2001.

    Google Scholar 

  39. Resta TC, Chicoine LG, Omdahl JL, and Walker BR. Maintained upregulation of pulmonary eNOS gene and protein expression during recovery from chronic hypoxia. Am J Physiol 276: H699–708, 1999.

    CAS  PubMed  Google Scholar 

  40. Robertson TP, Dipp M, Ward JP, Aaronson PI, and Evans AM. Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol 131: 5–9, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, and Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol 281: C571–578, 2001.

    CAS  Google Scholar 

  42. Sasaki Y, Suzuki M, and Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacology & Therapeutics 93: 225–232, 2002.

    Article  CAS  Google Scholar 

  43. Sato K, Webb S, Tucker A, Rabinovitch M, O’Brien RF, McMurtry IF, and Stelzner TJ. Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis 145: 793–797, 1992.

    CAS  Google Scholar 

  44. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, and Loirand G. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275: 21722–21729, 2000.

    Article  CAS  PubMed  Google Scholar 

  45. Seasholtz TM, Zhang T, Morissette MR, Howes AL, Yang AH, and Brown JH. Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27(Kipl) expression in the vasculature of hypertensive rats. Circ Res 89: 488–495, 2001.

    Article  CAS  PubMed  Google Scholar 

  46. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 39: 319–327, 2002.

    Article  CAS  PubMed  Google Scholar 

  47. Somlyo AP, and Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phos-phatase to smooth muscle and non-muscle myosin II. J Physiol 522: 177–185, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stelzner TJ, O’Brien RF, Yanagisawa M, Sakurai T, Sato K, Webb S, Zamora M, McMurtry IF, and Fisher JH. Increased lung endothelin-1 production in rats with idiopathic pulmonary hypertension. Am J Physiol 262: L614–620, 1992.

    CAS  PubMed  Google Scholar 

  49. Takemoto M, Sun J, Hiroki J, Shimokawa H, and Liao JK. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106: 57–62, 2002.

    Article  CAS  PubMed  Google Scholar 

  50. Tyler RC, Muramatsu M, Abman SH, Stelzner TJ, Rodman DM, Bloch KD, and McMurtry IF. Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 216: L297–303, 1999.

    Google Scholar 

  51. van Nieuw Amerongen GP, and van Hinsbergh VW. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler Thromb Vase Biol 21: 300–311, 2001.

    Article  CAS  Google Scholar 

  52. Vicencio AG, Eickelberg O, Stankewich MC, Kashgarian M, and Haddad GG. Regulation of TGF-beta ligand and receptor expression in neonatal rat lungs exposed to chronic hypoxia. J Appl Physiol 93: 1123–1130, 2002.

    CAS  PubMed  Google Scholar 

  53. Wang Z, Jin N, Ganguli S, Swartz DR, Li L, and Rhoades RA. Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am J Respir Cell Mol Biol 25: 628–635, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, and Schwartz RJ. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac mor-phogenesis and inhibits cardiomyocyte proliferation. Development 129: 1705–1714, 2002.

    CAS  PubMed  Google Scholar 

  55. Wettschureck N, and Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80: 629–638, 2002.

    Article  CAS  PubMed  Google Scholar 

  56. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, and Inagami T. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 35: 313–318, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. Yuan JX-J, and Rubin LJ. Pathophysiology of Pulmonary Hypertension. In: Respiratory-Cir-culatory Interactions in Health and Disease , edited by Scharf SM and Magder S. New York: Marcel Dekker, Inc, 2001, p. 447–490.

    Chapter  Google Scholar 

  58. Zhao Z, and Rivkees SA. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 226: 24–32, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

McMurtry, I.F., Bauer, N.R., Fagan, K.A., Nagaoka, T., Gebb, S.A., Oka, M. (2003). Hypoxia and Rho/Rho-Kinase Signaling. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics