Skip to main content

Molecular Phylogeny and Dating of Early Primate Divergences

  • Chapter
Anthropoid Origins

Abstract

Rapid evolutionary radiations characterize many higher-level taxa. This pattern of diversification poses a challenge for accurate phylogenetic reconstruction, since the few synapomorphies defining short internal branches are often overwritten over long periods of evolutionary time, making determination of homology difficult and rendering the outgroup method of rooting prone to error for both molecular and morphological systematic investigations (Carroll, 1988; Novacek, 1992; Swofford et al., 1996). These issues can be addressed and hopefully overcome by employing comprehensive taxon sampling, large numbers of characters, multiple data sets (derived from different sources), and diverse inferential techniques. In spite of being limited to samples of only living or recently extinct taxa, molecular data have great potential to help decipher the pattern and timing of rapid and ancient radiations. Specifically, they provide a means to collect larger numbers of phylogenetic characters than most morphological data matrices, and present a simpler and better understood mode of evolution that can be currently modeled within a maximum likelihood (ML) framework (e.g., Goldman et al., 2000; Swofford et al., 1996; Whelan et al., 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benton, M. J., 1993, The Fossil Record 2, Chapman & Hall, London.

    Google Scholar 

  • Benton, M. J., 1999, Early origins of modern birds and mammals: molecules vs. morphology, BioEssays 21:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Bromham, L., Phillips, M. J., and Penny, D., 1999, Growing up with dinosaurs: Molecular dates and the mammalian radiation, Tr. Ecol. Evol. 14: 113–118.

    Article  Google Scholar 

  • Buckley, T. R., 2002, Model misspecification and probabilistic tests of topology: evidence from empirical data sets, Syst. Biol. 51: 509–523.

    Article  PubMed  Google Scholar 

  • Carroll, R. L., 1988, Vertebrate Paleontology and Evolution, Freeman and Co, New York.

    Google Scholar 

  • D’Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Arnason, U., 1996, The guinea pig is not a rodent, Nature 381: 597–600.

    Google Scholar 

  • Easteal, S., 1999, Molecular evidence for the early divergence of placental mammals, BioEssays 21:1052–1058.

    Article  PubMed  CAS  Google Scholar 

  • Eizirik, E., Murphy, W. J., and O’Brien, S. J., 2001, Molecular dating and biogeography of the early placental mammal radiation, J. Hered. 92: 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr., 1999, Evolutionary and preservational constraints on origins of biologic groups: Divergence times of eutherian mammals, Science 283:1310–1314.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Milinkovitch, M., Waddell, V., and Stanhope, M., 1999, Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa, Syst. Biol. 48: 6–20.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, N., Anderson, J. P., and Rodrigo, A. G., 2000, Likelihood-based tests of topologies in phylogenetics, Syst. Biol. 49: 652–670.

    Article  PubMed  CAS  Google Scholar 

  • Graur, D., Hide, W. A., and Li, W.-H., 1991, Is the guinea-pig a rodent? Nature 351: 649–652.

    Article  PubMed  CAS  Google Scholar 

  • Graur, D., Duret, L., and Gouy, M., 1996, Phylogenetic position of the order Lagomorpha (rabbits, hares, and allies), Nature 379: 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Groves, C. P., 1989, A Theory of Human and Primate Evolution, Clarendon Press, Oxford.

    Google Scholar 

  • Hillis, D. M., 1996, Inferring complex phylogenies, Nature 383: 130–131.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P. and Ronquist, F., 2001, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R, and Bollback, J. P., 2001, Bayesian inference of phylogeny and its impact on evolutionary biology, Science 294: 2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R. F., Ross, C., and Williams, B. A., 1997, Anthropoid origins, Science 275: 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, H. and Hasegawa, M., 1989, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea, J. Mol. Evol. 29: 170–179.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, H., Thorne, J. L., and Bruno, W. J., 2001, Performance of a divergence time estimation method under a probabilistic model of rate evolution, Mol. Biol. Evol. 18: 352–361.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S. and Hedges, S. B., 1998, A molecular timescale for vertebrate evolution, Nature 392: 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S., 1996, Interordinal mammalian relationships: Evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences, Mol. Phylogenet. Evol. 6: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., et al., 2001, Parallel adaptive radiations in two major clades of placental mammals, Nature 409: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. P. and Palumbi, S. R., 1993, Body size, metabolic rate, generation time, and the molecular clock, Proc. Natl. Acad. Sci. USA 90: 4087–4091.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. D., 1990, Primate Origins and Evolution: A Phylogenetic Reconstruction, Princeton University Press, Princeton.

    Google Scholar 

  • Martin, R D., 1993, Primate origins: Plugging the gaps, Nature 363: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, M. C. and Bell, S. K., 1997, Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y.-P., Ryder, O. A., and O’Brien, S. J., 2001a, Molecular phylogenetics and the origins of placental mammals, Nature 409: 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., et al., 2001b, Resolution of the early placental mammal radiation using Bayesian phylogenetics, Science 294: 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Novacek, M. J., 1992, Mammalian phylogeny: Shaking the tree, Nature 356: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Pryer, K. M., Schneider, H., Smith, A. R, Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D., 2001, Horsetails and ferns are a monophyletic group and the dosest living relatives to seed plants, Nature 409: 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., et al., 1999, The earliest angiosperms: Evidence from mitochondrial, plastid, and nuclear genomes, Nature 402: 404–407.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A. and Grassly, N. C., 1997, Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees, Comput. Applic. Biosci. 13: 235–238.

    CAS  Google Scholar 

  • Reyes, A., Gissi, C., Pesole, G., Catzeflis, F., and Saccone, C., 2000, Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris, Mol. Biol. Evol. 17: 979–983.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, A., Pesole, G., and Saccone, C., 1998, Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: Further evidence of rodent paraphyly, Mol. Biol. Evol. 15: 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C., Williams, B., and Kay, R. F., 1998, Phylogenetic analysis of anthropoid relationships, J. Human Evol. 35: 221–306.

    Article  CAS  Google Scholar 

  • Schmitz, J., Ohme, M., and Zischler, H., 2001, SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates, Genetics 157: 777–784.

    PubMed  CAS  Google Scholar 

  • Schmitz, J., Ohme, M., and Zischler, H., 2002, The complete mitochondrial sequence of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA, Mol. Biol. Evol. 19: 544–553.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert, E. R., Simons, E. L., and Attia, Y., 2003, Fossil evidence for an ancient divergence of lorises and galagos. Nature 422: 421–424.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert, E. R., Simons, E. L., and Simons, C. V. M, (this volume) Phylogenetic, biogeographic, and adaptive implications of new fossil evidence bearing on crown anthropoid origins and early stem catarrhine evolution.

    Google Scholar 

  • Shoshani, J. and McKenna, M. C., 1998, Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data, Mol. Phylogenet. Evol. 9: 572–584.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G., 1945, The principles of classification and a classification of mammals, Bull. Am. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Soltis, P. S., Soltis, D. E., and Chase, M. W., 1999, Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology, Nature 402: 402–404.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Armine, H. M., and Stanhope, M. J., 1997, Endemic African mammals shake the phylogenetic tree, Nature 388: 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S., DeBry, R. W., Douady, C., Amrine, H. M., Madsen, O., de Jong, W. W., and Stanhope, M. J., 2001, Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction, Mol. Biol. Evol. 18:132–143.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M.S., Murphy, W.J., Eizirik, E., O’Brien, S. J., 2003, Placental mammal diversification and the Cretaceous-Tertiary boundary, Proc. Natl. Acad. Sci. USA 100:1056–1061.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L., Olsen, G., Waddell, P., and Hillis, D. M., 1996, Phylogenetic inference, in: Moleeular Systematics. D.M. Hillis, C. Moritz, and B. Mable, eds., Sinauer, Sunderland, pp. 407–514.

    Google Scholar 

  • Swofford D. L., 1998, PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer, Sunderland.

    Google Scholar 

  • Takezaki, N., Rzhetsky, A., and Nei, M., 1995, Phylogenetic test of the molecular clock and linearized trees, Mol. Biol. Evol. 12: 823–833.

    PubMed  CAS  Google Scholar 

  • Tavaré, S., Marshall, C. R., Will, O., Soligo, C., and Martin, R. D., 2002, Using the fossil record to estimate the age of the last common ancestor of extant primates, Nature 416: 726–729.

    Article  PubMed  Google Scholar 

  • Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M., Springer, M. S., and Stanhope, M. J., 2000, Molecular evidence regarding the origin of echolocation and flight in bats, Nature 403: 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Thorne, J. L., Kishino, H., and Painter, I. S., 1998, Estimating the rate of evolution of the rate of molecular evolution, Mol. Biol. Evol. 15: 1647–1657.

    Article  PubMed  CAS  Google Scholar 

  • Whelan, S., Lio, P., and Goldman, N., 2001, Molecular phylogenetics: State-of-the-art methods for looking into the past, Trends Genet. 17: 262–272.

    Article  PubMed  CAS  Google Scholar 

  • Yoder, A. D., and Yang, Z., 2000, Estimation of primate speciation dates using local molecular clocks, Mol. Biol. Evol. 17: 1081–1090.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eizirik, E., Murphy, W.J., Springer, M.S., O’Brien, S.J. (2004). Molecular Phylogeny and Dating of Early Primate Divergences. In: Ross, C.F., Kay, R.F. (eds) Anthropoid Origins. Developments in Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8873-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8873-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4700-2

  • Online ISBN: 978-1-4419-8873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics