Skip to main content

Abstract

Induction of the immediate-early-gene c-fos occurs in response to a wide variety of external stimuli, and therefore represents a method to functionally map neuronal activity in the brain with cellular resolution. We investigated systematically in rats the distribution of Foslike activity in the auditory pathway elicited by various types of stimulation of the cochlea.

In response to pure tones (45 minutes exposure), Fos-like immunoreactivity (FLI) was found to form bands reflecting the tonotopic arrangement of neurons in the dorsal (DCN) and posteroventral (PVCN) cochlear nuclei, the lateral superior olive (LSO), the dorsal nucleus of the lateral lemniscus (DLL) and the central nucleus of the inferior colliculus (CIC). Surprisingly, virtually no FLI was observed in the anteroventral cochlear nucleus (AVCN) and the ventral division of the MGB (vMGB). In the primary auditory cortex (Te 1), FLI was present but did not reveal its tonotopic organization.

After electrical stimulation of the whole cochlea, FLI was found to cover the entire extent of DCN, PVCN, LSO, DLL as well as non-tonotopic nuclei such as the external (ECIC) and dorsal (DCIC) nuclei of the inferior colliculus, the medial (mMGB)and dorsal (dMGB) divisions of the medial geniculate body. FLI was also broadly and unspecifically distributed in the 3 auditory cortical areas Te 1, Te2 and Te3. In contrast, no FLI was seen in AVCN, CIC and vMGB. Even a short period of stimulation (5 minutes) was sufficient to significantly increase FLI in most of the above auditory nuclei. Changing the intensity or duration of stimulation and the survival time could modify substantially the distribution of FLI. Similarly, using another commercial source of antibody against c-los could make FLI to be detected in AVCN and the CIC, but not in vMGB.

FLI was established in the auditory pathway of rats during the successive steps of the learning of a complex sensorimotor task. At all steps of learning, FLI was constant in the subcortical auditory nuclei, namely in DCN, the posteroventral cochlear nucleus (PVCN), LSO, the dorsal nucleus of the lateral lemniscus (DLL), CIC, ECIC, DCIC, mMGB and dMGB. As observed above for passive listening, no or little FLI was observed in AVCN and vMGB. In contrast to the subcortical auditory nuclei, a differential FLI distribution reflecting the progessive steps of task learning was found in the auditory cortical areas.

Taken together, these data indicate that c-fos is not a general functional marker of activity. C-fos is characterized by a significant degree of selectivity for certain stimuli; in addition, for the same stimulus, c-fos expression depends on the context. Furthermore, FLI appeared to be induced preferentially in some cell types (small neurons) as opposed to others (large neurons). Parameters of stimulation (duration, intensity, survival time) and the age of the animal play also an important role, as well as the type of antibody used to visualize Fos activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. Sound stimulation induces Fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J. Comp. Neurol. 361: 645–668; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.C.: Liu, T.S. (1995) Fos-like immunoreactivity in central auditory neurons of the mouse. J. Comp. Neurol. 357: 85–97; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M; Faull, R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Meth. 29:261–265; 1989.

    Article  CAS  Google Scholar 

  • Ehret, G.; Fischer, R. Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res. 567:350–354; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Friauf, E. Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Em: J. Neurosci. 4:798–812; 1992.

    Article  Google Scholar 

  • Friauf, E. C-fos immunocytochemical evidence for acoustic pathway mapping in rats. Behav. Brain Res. 66: 217–224; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gleich. O.; Bielenberg. K.; Strutz. J. Sound induced expression of c-Fos in GABA positive neurones of the gerbil cochlear nucleus. Neuroreport 7: 29–32: 1995.

    PubMed  CAS  Google Scholar 

  • Homer, K. C, Bock. G. R. Inferior colliculus single unit responses to peripheral electrical stimulation in normal and congenially deaf mice. Dev. Brain Res. 15:33–43; 1984.

    Article  Google Scholar 

  • Hunt, S. P.; Pini, A.: Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kiang, N.Y.S., Moxon, E.C. Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. 81: 714–730; 1972.

    CAS  Google Scholar 

  • Le Gal La Salle, G.; Naquet, R. Audiogenic seizures evoked in DBA/2 mice induce c-fos oncogene expression into subcortical auditory nuclei. Brain Res. 518:308–312; 1990.

    Article  PubMed  Google Scholar 

  • Meltzer, P. The central auditory pathway of the gerbil Psammomys Obesus: a deoxyglucose study. Hearing Res. 15: 187–195; 1984.

    Article  Google Scholar 

  • Morgan, J. I.; Curran, T. Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Anna. Rev. Neurosci. 14:421–451; 1991.

    CAS  Google Scholar 

  • Paxinos, G.; Watson, C. The rat brain in stereotaxic coordinates, New-York: Academic Press, pp. 1–119; 1986

    Google Scholar 

  • Pellerin, L.; Magistretti, P.M. Glutamate uptake into astrocytes stimulates aeroboc glycolysis: a mechanism cou-pling neuronal activity to glucose utilization. PNAS 91: 10625–10629; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Pierson, M.: Snyder-Keller, A. Development of frequency-selective domains in inferior colliculus of normal and neonatally noise-exposed rats. Brain Res. 636:55–67; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Reimer, K.. Simultaneous demonstration of Fos-like immunoreactivity and 2-deoxy-glucose uptake in the inferior colliculus of the mouse. Brain Res. 616:339–343; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H. A. Immediate-early genes, neuronal plasticity, and memory. Biochem. Cell Biol. 70:729–737; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H. A.; Dragunow, M. From synapse to genome: The role of immediate early genes in permanent altera-tions in the central nervous system. In: Osborne, N.N., ed. Current aspects of the Neurosciences. New-York: Macmillan; 1992:143.

    Google Scholar 

  • Rouiller, E. M.; Wan, X. S. T.; Moret, V.; Liang, F. Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci. Lett. 144:19–24; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K.; Houtani, T.; Ueyama, T.; Ikeda, M.; Yamashita, T.; Kumazawa, T.; Sugimoto, T. Mapping of the cochlear nucleus subregions in the rat with neuronal Fos protein induced by acoustic stimulation with low tones. Neurosci. Lett. 142:48–52; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K.; Houtani, T.; Ueyama. T.; Ikeda, M.; Yamashita, T.; Kumazawa, T.; Sugimoto, T. Identification of rat brainstem sites with neuronal Fos protein induced by acoustic stimulation with pure tones. Acta Otolaryn-gol. (Stockh.) 113 Suppl. 500:18–22; 1993.

    Article  CAS  Google Scholar 

  • Scheich, H.; Zuschratter, W. Mapping of Stimulus features and meaning in gerbil auditory cortex with 2-deoxyglu-cose and c-Fos antibodies. Behavioural Brain Res. 66: 195–205; 1995.

    Article  CAS  Google Scholar 

  • Serviere, J., Webster, W.R. and Calford, MB. Isofrequency labelling revealed by a combined 14C-2-deoxyglu-cose, electrophysiological and horseradish peroxidase study of the inferior colliculus of the cat. J.Comp.Neurol. 228: 463–177; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Snyder-Keller, A. M.; Pierson, M. G. Audiogenic seizures induce c-fos in a model of developmental epilepsy. Neurosa. Lett. 135:108–112: 1992.

    Article  CAS  Google Scholar 

  • Van Den Honert, C, Stypulkowski, P. H. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Res. 29:195–206. 1987.

    Article  Google Scholar 

  • Vischer, M. W.; Häusler, R.; Rouiller, E. M. Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci. Res. 19:175–185; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Vischer, M., Bajo-Lorenzana, V.; Zhang, J.S.; Häusler. R.; Rouiller E.M. (1995) Activity elicited in the auditory pathway of the rat by electrical stimulation of the cochlea. ORL 57, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Wan, X. S. T.; Liang, F.; Moret, V.; Wiesendanger, M.; Rouiller, E. M. Mapping of the motor pathways in rats: r-fos induction by intracortical microstimulation of the motor cortex correlated with efferent connectivity of the site of cortical stimulation. Neurosci. 49:749–761; 1992.

    Article  CAS  Google Scholar 

  • Webster, W.R., Serviere, J., Batini, C. and Laplante, S. Autoradiographic demonstration with 2-14C deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity. Neuro-sci. Lett. 10: 43–48; 1978.

    Article  CAS  Google Scholar 

  • Zhang, J.S.; Haenggeli, CA.; Tempini, A.; Vischer, M.W.; Moret, V. and Rouiller, E.M. Electrically induced Fos-like immunoreactivity (FLI) in the auditory pathway of the rats: effects of survival time, duration and in-tensity of stimulation. Brain Res. Bull. 39. 2: 75–82; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K. The cortex of the rat. a stereotaxic atlas, Berlin: Springer-Verlag, pp. 1–121; 1985.

    Google Scholar 

  • Zuschratter, W.; Gass, P.; Herdegen, T.; Scheich, H. Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiciilatus). Eur.J.Neurosci. 7:1614–1626; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rouiller, E.M. (1997). Mapping Activity in the Auditory Pathway with C-Fos. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics