Skip to main content

Diagnostic First Mirrors for Burning Plasma Experiments

  • Chapter
Advanced Diagnostics for Magnetic and Inertial Fusion

Abstract

The lifetime of refractive components exposed to reactor grade plasmas will be very short and so all diagnostics which use UV (λ > 5nm), Visible and IR radiation (λ up to ∼100μm) have to view the plasma via a mirror. The diagnostic first mirrors (FM) must survive in extremely hostile conditions and maintain a good optical performance for the duration of reactor operation. In ITER-FEAT the FMs will receive intense UV and X-ray radiation, neutron and gamma fluxes, and particle fluxes (due to charge exchange atoms (CXA)). In addition, they will be subjected to the deposition of material eroded from the divertor and first wall. Of the different kinds of radiation and fluxes only CXA impact will result in direct surface modification of metallic FMs that can lead to degradation of optical properties. The fluxes of all radiation components to the mirror surface depend strongly on the mirror location. For example, the FMs of a wide-angle observation system (endoscope with open architecture) in ITER will be bombarded by CXA fluxes of about the same magnitude as the first wall. On the other hand, the FMs in the LIDAR system are located in a long duct (∼2 m in length) and will receive CXA fluxes ∼ 10−2 of the first wall flux. This corresponds to about the lowest flux received by a FM in ITER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Outline Design of the ITER-FEAT. To appear in the IAEA documentation series.

    Google Scholar 

  2. P. Nielsen, et al. LIDAR Thomson scattering for the ITER core plasma. In: Diagnostics for Experimental Thermonuclear Reactors 2, edited by P. E. Stott et al. (Plenum Press, 1998), p. 217.

    Google Scholar 

  3. V. S. Voitsenya. Rev.Sci.Instr.70, 787 (1999).

    Article  ADS  Google Scholar 

  4. A. F. Bardamid, et al. Rev.Sci.Instr.70, 790 (1999).

    Article  ADS  Google Scholar 

  5. V. S. Voitsenya et al. Rev.Sci.Instr72, 475 (2001).

    Article  ADS  Google Scholar 

  6. A. E. Costley, et al. Overview of the ITER Diagnostic System. Ibid2, P.41.

    Google Scholar 

  7. H. E. Bennett. JOSA, 53, 1389(1963).

    Article  ADS  Google Scholar 

  8. H. Verbeek, et al. Nuclear Fusion38, 1789(1998).

    Article  ADS  Google Scholar 

  9. Y. Miura and JFT-2M Team. Nuclear Fusion, 37, 175 (1997).

    Article  ADS  Google Scholar 

  10. M. Mayer, et al. Ibid [2], p. 279.

    Google Scholar 

  11. A. F. Bardamid, et al. Surface Coatings & Technol. 103–104, 365 (1998).

    Article  Google Scholar 

  12. A. F. Bardamid, et al. Vacuum58 (2000) 10.

    Article  Google Scholar 

  13. R. Behrisch, et al. J. Nucl Mater.60, 321 (1976).

    Article  ADS  Google Scholar 

  14. M. Nagatsu. Private communication.

    Google Scholar 

  15. V. S. Voitsenya et al. J. Nucl Mater.290–293 (2001) 336.

    Article  Google Scholar 

  16. N. V. Klassen, et al. “Materialovedenie”, No 2, 1997, p.47(in Russian).

    Google Scholar 

  17. K. Yu. Vukolov et al. This Proceedings.

    Google Scholar 

  18. A. M. Zimin, et al. Plasma Devices and Operations. 8, 15 (1999).

    Article  Google Scholar 

  19. Handbook of Optical Constants of Solids, E. D. Palik Editor, Acad.Press, 1985and 1991.

    Google Scholar 

  20. G. Hass. JOSA. 47, 1070 (1957).

    Article  ADS  Google Scholar 

  21. V. S. Voitsenya. Sov. J. Plasma Phys.17 (1991) 135.

    Google Scholar 

  22. Lianghua Yao, Shouqi Sun, Donghai Yan et al. J. Nucl. Mater.176–177 (1990) 645.

    Google Scholar 

  23. V. M. Sharapov, V. Kh. Alimov, L. E. Gavrilov. J. Nucl. Mater.258–263 (1998) 803.

    Article  Google Scholar 

  24. D. F. Edwards and R. H. White. Beryllium Oxide. — Ibid [19], p.805.

    Google Scholar 

  25. A. G. Razdobarin, G. Federici, V. M. Kozhevin et al. Submitted toFusion Science and Technology.

    Google Scholar 

  26. Y. Hirooka. J. Nucl. Mater., 258–263, 1045 (1998).

    Article  Google Scholar 

  27. Y. Yamamuraand H. Tawara. Report NIFS-DATA-23, March1995.

    Google Scholar 

  28. F. P. Orsitto, et al. Rev. Sci Instr.72 (2001) 540.

    Article  ADS  Google Scholar 

  29. B. Landkammer, A. von Keudell, W. Jacob. J. Nucl.Mater.264, (1999) 48.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voitsenya, V.S. et al. (2002). Diagnostic First Mirrors for Burning Plasma Experiments. In: Stott, P.E., Wootton, A., Gorini, G., Sindoni, E., Batani, D. (eds) Advanced Diagnostics for Magnetic and Inertial Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8696-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8696-2_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4669-2

  • Online ISBN: 978-1-4419-8696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics