Skip to main content

Abstract

By 1992 only about half a dozen fossil meteorites had been found in the Earth’s entire geological record. This is a very low number considering the vast surface of exposed sedimentary rock visually examined during geological field work and industrial quarrying in the 20th century. In the first systematic fossil meteorite search, pursued 1992–2000 in the active Thorsberg quarry in Lower Ordovician marine limestone in southern Sweden, 35 additional fossil meteorites have been found. These meteorites, 1-20 cm in cross section, accumulated over ∼ 1.75 Myr, over a seafloor area of ∼5500 m2, making this one of the most meteorite-dense areas known in the world. Studies of the distribution of fossil meteorites and their relict minerals in geological strata can provide new knowledge about variations in meteorite influx and major asteroid breakup events in the asteroid belt throughout solar system history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. W., Alvarez, W., Asaro, E, and Michel, H. Y Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  ADS  Google Scholar 

  • Anonymous. Notes. Nature 103, 19 (1919).

    Google Scholar 

  • Bunch, T. E., Keil, K., and Snetsinger, K. G. Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Acta 31, 1569–1582 (1967).

    Article  ADS  Google Scholar 

  • Gold, D. P., Sicree, A. A., and Hoover, K. A strategy for the search and recovery of fossil iron meteorites in sedimentary rocks. Meteor. Planet. Sci. 34, A44 (1999).

    Google Scholar 

  • Haack, H., Farinella, P., Scott, E. R. D., and Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996).

    Article  ADS  Google Scholar 

  • Halliday, I., Blackwell, A. T., and Griffin, A. A. The flux of meteorites on the Earth’s surface.Meteoritics 24, 173–178 (1989).

    ADS  Google Scholar 

  • Halliday, I., Blackwell, A. T., and Griffin, A. A. The frequency of meteorite falls: Comments on two con-flicting solutions to the problem. Meteoritics 26, 243–249, 1991.

    ADS  Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V, Craig, L. E., Smith, A. G., and Smith, D. G. A geologic timescale 1989. Cambridge Univ. Press, Cambridge, 263 pp. (1989).

    Google Scholar 

  • Henderson, E. P. and Cooke, C. W. The Sardis (Georgia) meteorite. Proc. U. S. Natl. Museum 92, 141–150 (1942).

    Article  Google Scholar 

  • Hofmann, B. A., Nyström, J. O., and Krähenbühl, U. The Ordovician chondrite from Brunflo, central Sweden: III. Geochemistry of terrestrial alteration. Lihos 50, 305–324 (2000).

    ADS  Google Scholar 

  • Kyte, F. T. A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237–239 (1998).

    Article  ADS  Google Scholar 

  • Lindström, M. Vom Anfang, Hochstand und Ende eines Epikontinentalmeeres. Geol. Rdsch. 60, 419–438 (1971).

    Article  Google Scholar 

  • Lugmair, G. W. and Shukolyukov, A. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998).

    Article  ADS  Google Scholar 

  • Löfgren, A. Arenigian and Llanvirnian conodonts from Jämtland, northern Sweden. Fossils and Strata 13, 1–129 (1978).

    Google Scholar 

  • Lovering, J. F. Frequency of meteorite falls throughout the ages. Nature 183, 1664–1665 (1959).

    Article  ADS  Google Scholar 

  • Mason, B. Meteorites. Wiley, New York, 274 pp. (1962).

    Google Scholar 

  • Meisel, T., Walker, R., and Morgan, J. W. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520 (1996).

    Article  ADS  Google Scholar 

  • Nininger, H. H. Notes on oxidation of certain meteorites: The formation of meteoroides. Trans. Kansas Acad. Sci. 32, 63–67 (1929).

    Article  Google Scholar 

  • Nininger, H. H. Find a falling star. Paul S. Eriksson, New York, 254 pp. (1972).

    Google Scholar 

  • Nyström, J. O. and Wickman, F. E. The Ordovician chondrite from Brunflo, central Sweden: II. Secondary minerals. Lihos 27, 167–185 (1991).

    ADS  Google Scholar 

  • Nyström, J. O., Lindström, M., and Wickman, F. E. Discovery of a second Ordovician meteorite using chromite as a tracer. Nature 336, 572–574 (1988).

    Article  ADS  Google Scholar 

  • Paneth, F. A. Vistas in astronomy. Pergamon, London (1956).

    Google Scholar 

  • Patterson, D. B., Farley, K. A., and Schmitz, B. Preservation of extraterrestrial 3He in 480-Ma-old marine limestones. Earth Planet. Sci. Lett. 163, 315–325 (1998).

    Article  ADS  Google Scholar 

  • Petterson, H. Frequency of meteorite falls throughout the ages. Nature 183, 1114 (1959).

    Article  ADS  Google Scholar 

  • Schmitz, B., Lindström, M., Asaro, F., and Tassinari, M. Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden. Earth Planet. Sci. Lett. 145,31–48(1996).

    Article  ADS  Google Scholar 

  • Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M., and Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997).

    Article  ADS  Google Scholar 

  • Schwinner, R. Meteoriten und Geologie. Gerlands Beitr. Geophys. 16, 195–222 (1927).

    Google Scholar 

  • Sicree, A. A., Gold, D. P., and Hoover, K. Potential for preservation and recovery of fossil iron meteorites from coal, trona, limestone, and other sedimentary rocks. Meteor. Planet. Sci. 32, A121 (1997).

    Google Scholar 

  • Thorslund, P. and Wickman, F. E. Middle Ordovician chondrite in fossiliferous limestone from Brunflo, central Sweden. Nature 289, 285–286 (1981).

    Article  ADS  Google Scholar 

  • Thorslund, P., Wickman, F. E., and Nyström, J. O. The Ordovician chondrite from Brunflo, central Sweden: I. General description and primary minerals. Lithos 17, 87–100 (1984).

    Article  ADS  Google Scholar 

  • Yudin, I. A., Relict structures of stony meteorites in a Mesozoic formation of the central Urals. Meteoritics 6,99–103 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmitz, B., Tassinari, M. (2001). Fossil Meteorites. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics