Skip to main content

ADP-Ribose

A Historical Overview

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

ADP-ribosylation of proteins was first detected as a modification of nuclear proteins by polymeric ADP-ribose residues derived from NAD+. Subsequently, the field developed into three destinct sections: (i) Possible function(s) of poly-ADP-ribosylation with increasing evidence for participation in DNA excision repair and perhaps in DNA recombination; (ii) Mono-ADP-ribosylation as a mechanism to inactivate (by some toxins) or to regulate enzymes/proteins (e.g. in bacterial nitrogen fixation, in protein traffic through membranes, in intercellular communication); (iii) Intramolecular ADP-ribosylation converting NAD+ to cyclic ADP-ribose, a possible Ca2+-mobilizing agonist. Thus, NAD+ first known as a cofactor of oxidoreductases has experienced an impressive metamorphosis from a housekeeping coenzyme to a multifunctional group transfering metabolite involved in an increasing number of intracellular and intercellular regulatory loops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Euler, H., H. Albers, & F. Schlenk. 1936. Chemische Untersuchungen an hochgereinigter Co-Zymase. Hoppe-Seyl. Z.Physiol.Chem. 240: 113–126.

    Article  Google Scholar 

  2. Warburg, O., W. Christian, & A. Griese. 1935. Wasserstoffübertragendes Co-Ferment, seine Zusammen-setzung und Wirkungsweise. Biochem. Z. 282: 157–165; Warburg, O. 1948. Wasserstoff-übertragende Fer-mente. W. Saenger-Verlag, Berlin.

    CAS  Google Scholar 

  3. Lipmann, F. 1941. Metabolic generation and utilization of phosphate bond energy. Advances in Enzymol-ogy. 1:99–126.

    CAS  Google Scholar 

  4. Hilz, H. & P. Stone. 1976. Poly(ADP-Ribose) and ADP-Ribosylation of proteins. Rev. Physiol. Biochem. Pharmacol. 76:1–58.

    Article  PubMed  CAS  Google Scholar 

  5. Chambon, P., J.D. Weil], & P. Mandel. 1963. Nicotinamide mononucleotide activation of a new DNA-de-pendent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 77:39–43.

    Article  Google Scholar 

  6. Hayaishi, O. & K. Ueda. 1977. Poly(ADP-Ribose) and ADP-Ribosylation of proteins. Ann. Rev. Biochem. 46:95–116

    Article  PubMed  CAS  Google Scholar 

  7. Althaus, F.R., H. Hilz, & S. Shall. 1985. ADP-Ribosylation of Proteins. Springer Verlag, Berlin.

    Book  Google Scholar 

  8. Jacobson, M.K. & E.L. Jacobson. 1989. ADP-Ribose Transfer Reactions. Springer Verlag, New York.

    Book  Google Scholar 

  9. Hayaishi, O. & K. Ueda (Eds.) 1982. ADP-Ribosylation Reactions. Academic Press,Inc, New York.

    Google Scholar 

  10. Durkacz, B., O. Omidiji, D. Gray, & S. Shall. 1980. Poly (ADP-ribose) participates in DNA excision repair. Nature 283: 593–596.

    Article  PubMed  CAS  Google Scholar 

  11. Miwa, M., O. Hayaishi, S. Shall, M. Smulson, & T. Sugimura. 1983. ADP-Ribosylation, DNA Repair and Cancer. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  12. Ludwig, A., B. Behnke, J. Holtlund, & H. Hilz. 1988. Immunoquantitation and size determination of intrinsic poly(ADP-ribose)polymerase from acid precipitates. An analysis of the in vivo status in mammalian cells and in lower eukaryotes. J.Biol.Chem. 263: 6993–6999.

    PubMed  CAS  Google Scholar 

  13. Menissier-de Murcia, J., M. Molinete, G. Gradwohl, F. Simonin, & G. de Murcia. 1989. Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA. J.Mol.Biol. 210:229–233

    Article  Google Scholar 

  14. Chatterjee S., M.F. Cheng, & S.J. Berger. 1991. Alkylating agent hypersensitivity in poly(adenosine diphosphate-ribose)polymerase deficient cell lines. Cancer Commun. 3: 71–75

    PubMed  CAS  Google Scholar 

  15. Küpper, J.H., M. Müller, M.K. Jacobson, J. Tatsumi, D.L. Coyle, E.L. Jacobson, & A. Bürkle. 1995. Trans-dominant inhibition of poly-ADP-ribosylation sensitizes cells against g-irradiation and NMNG but does not limit DNA replication of a polyomavirus replicon. Mol.Cell.Biol. 15: 3154–3163.

    PubMed  Google Scholar 

  16. Wang, Z.Q.,B. Auer, L. Stingl, H. Berghammer, D. Haidacher, M. Schweiger, & E.F. Wagner. 1995. Mice lacking ADPRT and poly-ADP-ribosylation develop normally but are susceptible to skin disease. Genes and Development 9: 509–520.

    Article  PubMed  Google Scholar 

  17. Honjo, T., Y. Nishizuka, O. Hayaishi, & I. Kato. 1968. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein sythesis. J.Biol.Chem. 243: 3553–3555.

    PubMed  CAS  Google Scholar 

  18. Moss, J. & M. Vaughan.1977. Mechanism of action of choleragen. Evidence of ADP-ribosyltransferase activity with arginine as an acceptor. J.Biol.Chem. 252: 2455–2457.

    PubMed  CAS  Google Scholar 

  19. Pekala, P.H. & B. M. Anderson. 1982. Non-oxidation-reduction reactions of pyridine nucleotides. in: Everse, J., B. Anderson, & K. You (eds.) The pyridine nucleotide coenzymes. Academic Press, New York.

    Google Scholar 

  20. Hilz, H., R. Bredehorst, P. Adamietz, & K. Wielckens. 1982. Subfractions and subcellular distribution of mono(ADP-ribosyl) proteins in eukaryotic cells. In: Hayashi O. & K. Ueda (eds.). ADP-Ribosylation Reactions. Academic Press, Inc.. New York.

    Google Scholar 

  21. Okazaki, I.J., A. Zolkiewska, T. Takada, & J. Moss. 1995. Characterization of mammalian ADP-ribosyla-tion cycles. Biochimie 77: 319–325.

    Article  PubMed  CAS  Google Scholar 

  22. Koch-Nolte, F., D. Petersen, S. Balasubramanian, F. Haag, D. Kahlke, T. Wilier, R. Kastelein, F. Bazan, & H.-G. Thiele. 1996. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADP-ri-bosyl) transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J.Biol.Chem. 271: 7686–7693.

    Article  PubMed  CAS  Google Scholar 

  23. Girolamo, M.D., M. G. Siletta, M. A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, & D. Corda. 1995. Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein py subunit complex. Proc.Natl.Acad.Sci.USA 92:7065–7069.

    Article  PubMed  Google Scholar 

  24. Cervantes-Laureant, D., P.T. Loflin, D.E. Minter, E.L. Jacobson, & M.K. Jacobson. 1995. Protein modification by ADP-ribose via acid-labile linkages. J.Biol.Chem. 270:1929–1936.

    Google Scholar 

  25. Lee, H.C, T. F. Walseth, G. T. Bratt, R. N. Hayes, & D. L. Clapper. 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J.Biol.Chem. 254:1608–1615.

    Google Scholar 

  26. Jacobson, M.K., J. Amé, W. Lin, D.L. Coyle, & E.L. Jacobson. 1995. Cyclic ADP-Ribose. Receptor 5: 43–49.

    PubMed  CAS  Google Scholar 

  27. Lee, H.C., R. Graeff, & T.F. Walseth. 1995. Cyclic ADP-ribose and its metabolic enzymes. Biochimie 77:345–355.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang F, Q. Gu, P. Jing, & C.J. Sih. 1995. Enzymatic cyclization of nicotinamide adenine dinucleotide phosphate (NADP). Bioorg.Med.Chem. Letters 5: 2267–2272

    Article  CAS  Google Scholar 

  29. Jacobson M.K., Vu C.Q., P. Lu, C. Chen, & M.K. Jacobson. 1995. 2-Phospho cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. J.Biol.Chem. 271:4141–4154.

    Google Scholar 

  30. Grimaldi, J.C., S. Balasubramanian, N.H. Kabra, A. Shanafelt, J.F. Bazan, G. Zerawski, & M.C. Howard. 1995. CD38-Mediated Ribosylation of Proteins. J. Immunol. 155: 812–817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hilz, H. (1997). ADP-Ribose. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics