Skip to main content

Tick Innate Immunity

  • Chapter
Invertebrate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nava S, Guglielmone AA, Mangold AJ. An overview of systematics and evolution of ticks. Front Biosci 2009; 14:2857–2877.

    Article  PubMed  CAS  Google Scholar 

  2. Barker SC, Murell A. Systematics and evolution of ticks with a list of valid genus and species names. In: Bowman AS, Nuttall PA, eds. Ticks: Biology, Disease and Control. New York: Cambridge University Press; 2008:1–39.

    Chapter  Google Scholar 

  3. Sonenshine DE. Biology of ticks. Vol 1. New York: Oxford University Press; 1991.

    Google Scholar 

  4. Mans BJ, Neitz AW. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol 2004; 34:1–17.

    Article  PubMed  CAS  Google Scholar 

  5. Jongejan F, Uilenberg G. The global importance of ticks. Parasitology 2004; 129 Suppl:S3–14.

    Article  Google Scholar 

  6. de la Fuente J, Estrada-Pena A, Venzal JM et al. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 2008; 13:6938–6946.

    Article  PubMed  Google Scholar 

  7. Francischetti IM, Sa-Nunes A, Mans BJ et al. The role of saliva in tick feeding. Front Biosci 2009; 14:2051–2088.

    Article  PubMed  CAS  Google Scholar 

  8. Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 2005; 38:128–150.

    PubMed  CAS  Google Scholar 

  9. Ferrandon D, Imler JL, Hetru C et al. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7:862–874.

    Article  PubMed  CAS  Google Scholar 

  10. Osta MA, Christophides GK, Vlachou D et al. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol 2004; 207:2551–2563.

    Article  PubMed  CAS  Google Scholar 

  11. Lehane MJ, Aksoy S, Levashina E. Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 2004; 20:433–439.

    Article  PubMed  CAS  Google Scholar 

  12. Sonenshine DE, Hynes WL. Molecular characterization and related aspects of the innate immune response in ticks. Front Biosci 2008; 13:7046–7063.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor D. Innate immunity in ticks. J Acarol Soc Jpn 2006; 15:109–127.

    Article  Google Scholar 

  14. Nene V. Tick genomics—coming of age. Front Biosci 2009; 14:2666–2673.

    Article  PubMed  CAS  Google Scholar 

  15. de la Fuente J, Kocan KM, Almazan C et al. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 2007; 23:427–433.

    Article  PubMed  CAS  Google Scholar 

  16. Bell-Sakyi L, Zweygarth E, Blouin EF et al. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol 2007; 23:450–457.

    Article  PubMed  CAS  Google Scholar 

  17. Kaufman WR, Phillips JE. Ion and Water-Balance in Ixodid Tick Dermacentor-Andersoni. 1. Routes of Ion and Water Excretion. Journal of Experimental Biology 1973; 58:523–536.

    CAS  Google Scholar 

  18. Kuhn KH, Haug T. Ultrastructural, Cytochemical and Immunocytochemical Characterization of Hemocytes of the Hard Tick Ixodes-Ricinus (Acari Chelicerata). Cell and Tissue Research 1994; 277:493–504.

    Article  Google Scholar 

  19. Inoue N, Hanada K, Tsuji N et al. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J Med Entomol 2001; 38:514–519.

    Article  PubMed  CAS  Google Scholar 

  20. Borovickova B, Hypsa V. Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata. Exp Appl Acarol 2005; 35:317–333.

    Article  PubMed  Google Scholar 

  21. Loosova G, Jindrak L, Kopacek P. Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina: Argasidae). Folia Parasitol (Praha) 2001; 48:149–153.

    CAS  Google Scholar 

  22. Buresova V, Franta Z, Kopacek P. A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J Invertebr Pathol 2006; 93:96–104.

    Article  PubMed  Google Scholar 

  23. Buresova V, Hajdusek O, Franta Z et al. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev Comp Immunol 2009; 33:489–498.

    Article  PubMed  CAS  Google Scholar 

  24. Burešová V. Function of the α2-macroglobulin protein family in the immune response of the tick Ixodes ricinus. [PhD.]. České Budějovice: Faculty of Science, University of South Bohemia; 2009.

    Google Scholar 

  25. Pereira LS, Oliveira PL, Barja-Fidalgo C et al. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp Parasitol 2001; 99:66–72.

    Article  PubMed  CAS  Google Scholar 

  26. Eggenberger LR, Lamoreaux WJ, Coons LB. Hemocytic encapsulation of implants in the tick Dermacentor variabilis. Exp Appl Acarol 1990; 9:279–287.

    Article  PubMed  CAS  Google Scholar 

  27. Ceraul SM, Sonenshine DE, Hynes WL. Resistance of the tick dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J Med Entomol 2002; 39:376–383.

    Article  PubMed  Google Scholar 

  28. Mattila JT, Munderloh UG, Kurtti TJ. Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. J Insect Sci 2007; 7:58.

    Article  PubMed  Google Scholar 

  29. Blouin EF, de la Fuente J, Garcia-Garcia JC et al. Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Anim Health Res Rev 2002; 3:57–68.

    Article  PubMed  Google Scholar 

  30. Kurtti TJ, Keyhani NO. Intracellular infection of tick cell lines by the entomopathogenic fungus Metarhizium anisopliae. Microbiology 2008; 154:1700–1709.

    Article  PubMed  CAS  Google Scholar 

  31. Rittig MG, Kuhn KH, Dechant CA et al. Phagocytes from both vertebrate and invertebrate species use “coiling” phagocytosis. Developmental and Comparative Immunology 1996; 20:393–406.

    Article  PubMed  CAS  Google Scholar 

  32. Coleman JL, Gebbia JA, Piesman J et al. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 1997; 89:1111–1119.

    Article  PubMed  CAS  Google Scholar 

  33. Johns R, Ohnishi J, Broadwater A et al. Contrasts in tick innate immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). J Med Entomol 2001; 38:99–107.

    Article  PubMed  CAS  Google Scholar 

  34. Johns R, Sonenshine DE, Hynes WL. Response of the tick Dermacentor variabilis (Acari: Ixodidae) to hemocoelic inoculation of Borrelia burgdorferi (Spirochetales). J Med Entomol 2000; 37:265–270.

    Article  PubMed  CAS  Google Scholar 

  35. Grubhoffer L, Rego ROM, Hajdušek O et al. Tick lectins and fibrinogen-related proteins. In: Bowman AS, Nuttall PA, eds. Ticks: Biology, Disease and Control. New York: Cambridge University Press; 2008:127–142.

    Chapter  Google Scholar 

  36. Kovar V, Kopacek P, Grubhoffer L. Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochem Mol Biol 2000; 30:195–205.

    Article  PubMed  CAS  Google Scholar 

  37. Rego RO, Kovar V, Kopacek P et al. The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochem Mol Biol 2006; 36:291–299.

    Article  PubMed  CAS  Google Scholar 

  38. Gokudan S, Muta T, Tsuda R et al. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA 1999; 96:10086–10091.

    Article  PubMed  CAS  Google Scholar 

  39. Kawabata S, Tsuda R. Molecular basis of nonself recognition by the horseshoe crab tachylectins. Biochim Biophys Acta 2002; 1572:414–421.

    PubMed  CAS  Google Scholar 

  40. Rego RO, Hajdusek O, Kovar V et al. Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol 2005; 35:991–1004.

    Article  PubMed  CAS  Google Scholar 

  41. Huang X, Tsuji N, Miyoshi T et al. Molecular characterization and oligosaccharide-binding properties of a galectin from the argasid tick Ornithodoros moubata. Glycobiology 2007; 17:313–323.

    Article  PubMed  CAS  Google Scholar 

  42. Kopacek P, Weise C, Saravanan T et al. Characterization of an alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. Eur J Biochem 2000; 267:465–475.

    Article  PubMed  CAS  Google Scholar 

  43. Saravanan T, Weise C, Sojka D et al. Molecular cloning, structure and bait region splice variants of alpha2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochem Mol Biol 2003; 33:841–851.

    Article  PubMed  CAS  Google Scholar 

  44. Blandin S, Levashina EA. Thioester-containing proteins and insect immunity. Mol Immunol 2004; 40:903–908.

    Article  PubMed  CAS  Google Scholar 

  45. Stroschein-Stevenson SL, Foley E, O’Farrell PH et al. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 2006; 4:e4.

    Article  PubMed  CAS  Google Scholar 

  46. Simser JA, Mulenga A, Macaluso KR et al. An immune responsive factor D-like serine proteinase homologue identified from the American dog tick, Dermacentor variabilis. Insect Mol Biol 2004; 13:25–35.

    Article  PubMed  CAS  Google Scholar 

  47. Kawabata S, Tokunaga F, Kugi Y et al. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Lett 1996; 398:146–150.

    Article  PubMed  Google Scholar 

  48. Maya-Monteiro CM, Daffre S, Logullo C et al. HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. J Biol Chem 2000; 275:36584–36589.

    Article  PubMed  CAS  Google Scholar 

  49. Gudderra NP, Sonenshine DE, Apperson CS et al. Hemolymph proteins in ticks. J Insect Physiol 2002; 48:269–278.

    Article  PubMed  CAS  Google Scholar 

  50. Zhioua E, Yeh MT, LeBrun RA. Assay for phenoloxidase activity in Amblyomma americanum, Dermacentor variabilis and Ixodes scapularis. J Parasitol 1997; 83:553–554.

    Article  PubMed  CAS  Google Scholar 

  51. Kadota K, Satoh E, Ochiai M et al. Existence of phenol oxidase in the argasid tick Ornithodoros moubata. Parasitol Res 2002; 88:781–784.

    Article  PubMed  Google Scholar 

  52. Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 2000; 275:29264–29267.

    Article  PubMed  CAS  Google Scholar 

  53. Podboronov VM, Berdyev A. Defense Mechanisms of Ixodid Ticks and Their Hosts (Parasite-Host Interactions) (in Russian) Aschabad: Ylym; 1991.

    Google Scholar 

  54. Podboronov VM. Antibacterial protective mechanisms of Ixodoid ticks. In: Dusbabek F, Bukva V, eds. Modern Acarology. Vol 2. Prague: Academia; 1991:375–380.

    Google Scholar 

  55. Simser JA, Macaluso KR, Mulenga A et al. Immune-responsive lysozymes from hemocytes of the American dogtick, Dermacentor variabilis and an embryonic cell line of the Rocky Mountain woodtick, D. andersoni. Insect Biochem Mol Biol 2004; 34:1235–1246.

    Article  PubMed  CAS  Google Scholar 

  56. Saito Y, Konnai S, Yamada S et al. Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. Insect Mol Biol 2009; 18:531–539.

    Article  PubMed  CAS  Google Scholar 

  57. Chrudimska T, Chrudimsky T, Golovchenko M et al. New defensins from hard and soft ticks: Similarities, differences and phylogenetic analyses. Vet Parasitol 2009.

    Google Scholar 

  58. Todd SM, Sonenshine DE, Hynes WL. Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum. Med Vet Entomol 2007; 21:141–147.

    Article  PubMed  CAS  Google Scholar 

  59. Johns R, Sonenshine DE, Hynes WL. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochem Mol Biol 2001; 31:857–865.

    Article  PubMed  CAS  Google Scholar 

  60. Ceraul SM, Sonenshine DE, Ratzlaff RE et al. An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Biochem Mol Biol 2003; 33:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  61. Hynes WL, Stokes MM, Hensley SM et al. Using RNA interference to determine the role of varisin in the innate immune system of the hard tick Dermacentor variabilis (Acari: Ixodidae). Exp Appl Acarol 2008; 46:7–15.

    Article  PubMed  CAS  Google Scholar 

  62. Kocan KM, de la Fuente J, Manzano-Roman R et al. Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. Exp Appl Acarol 2008; 46:17–28.

    Article  PubMed  CAS  Google Scholar 

  63. Lai R, Lomas LO, Jonczy J et al. Two novel noncationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J 2004; 379:681–685.

    Article  PubMed  CAS  Google Scholar 

  64. Lai R, Takeuchi H, Lomas LO et al. A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum. FASEB J 2004; 18:1447–1449.

    PubMed  CAS  Google Scholar 

  65. Fogaca AC, Lorenzini DM, Kaku LM et al. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev Comp Immunol 2004; 28:191–200.

    Article  PubMed  CAS  Google Scholar 

  66. Silva FD, Rezende CA, Rossi DC et al. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J Biol Chem 2009; 284:34735–34746.

    Article  PubMed  CAS  Google Scholar 

  67. Fogaca AC, Almeida IC, Eberlin MN et al. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides 2006; 27:667–674.

    Article  PubMed  CAS  Google Scholar 

  68. Fogaca AC, da Silva PI, Jr., Miranda MT et al. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J Biol Chem 1999; 274:25330–25334.

    Article  PubMed  CAS  Google Scholar 

  69. Nakajima Y, Ogihara K, Taylor D et al. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J Med Entomol 2003; 40:78–81.

    Article  PubMed  CAS  Google Scholar 

  70. Sonenshine DE, Hynes WL, Ceraul SM et al. Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp Appl Acarol 2005; 36:207–223.

    Article  PubMed  CAS  Google Scholar 

  71. Sforca ML, Machado A, Figueredo RC et al. The micelle-bound structure of an antimicrobial peptide derived from the alpha-chain of bovine hemoglobin isolated from the tick Boophilus microplus. Biochemistry 2005; 44:6440–6451.

    Article  PubMed  CAS  Google Scholar 

  72. Machado A, Sforca ML, Miranda A et al. Truncation of amidated fragment 33–61 of bovine alpha-hemoglobin: effects on the structure and anticandidal activity. Biopolymers 2007; 88:413–426.

    Article  PubMed  CAS  Google Scholar 

  73. Horn M, Nussbaumerova M, Sanda M et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 2009; 16:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  74. Liepke C, Baxmann S, Heine C et al. Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791:345–356.

    Article  PubMed  CAS  Google Scholar 

  75. Kopacek P, Vogt R, Jindrak L et al. Purification and characterization of the lysozyme from the gut of the soft tick Ornithodoros moubata. Insect Biochem Mol Biol 1999; 29:989–997.

    Article  PubMed  CAS  Google Scholar 

  76. Grunclova L, Fouquier H, Hypsa V et al. Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and postfeeding regulation. Dev Comp Immunol 2003; 27:651–660.

    Article  PubMed  CAS  Google Scholar 

  77. Ceraul SM, Dreher-Lesnick SM, Gillespie JJ et al. New tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect Immun 2007; 75:1973–1983.

    Article  PubMed  CAS  Google Scholar 

  78. Nakajima Y, van der Goes van Naters-Yasui A, Taylor D et al. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem Mol Biol 2001; 31:747–751.

    Article  PubMed  CAS  Google Scholar 

  79. Nakajima Y, van der Goes van Naters-Yasui A, Taylor D et al. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol Biol 2002; 11:611–618.

    Article  PubMed  CAS  Google Scholar 

  80. Nakajima Y, Ishibashi J, Yukuhiro F et al. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta 2003; 1624:125–130.

    PubMed  CAS  Google Scholar 

  81. Tsuji N, Battsetseg B, Boldbaatar D et al. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun 2007; 75:3633–3640.

    Article  PubMed  CAS  Google Scholar 

  82. Zhou J, Liao M, Ueda M et al. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides 2007; 28:1304–1310.

    Article  PubMed  CAS  Google Scholar 

  83. Rudenko N, Golovchenko M, Edwards MJ et al. Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol 2005; 42:36–41.

    Article  PubMed  CAS  Google Scholar 

  84. Hynes WL, Ceraul SM, Todd SM et al. A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med Vet Entomol 2005; 19:339–344.

    Article  PubMed  CAS  Google Scholar 

  85. Isogai E, Isogai H, Takahashi K et al. Antimicrobial activity of three tick defensins and four mammalian cathelicidin-derived synthetic peptides against Lyme disease spirochetes and bacteria isolated from the midgut. Exp Appl Acarol 2009; 49:221–228.

    Article  PubMed  CAS  Google Scholar 

  86. Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 2008; 9:552.

    Article  PubMed  CAS  Google Scholar 

  87. Kongsuwan K, Josh P, Zhu Y et al. Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus) microplus). J Insect Physiol 2010; 56:212–226.

    Article  PubMed  CAS  Google Scholar 

  88. Zhou J, Ueda M, Umemiya R et al. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem Mol Biol 2006; 36:527–535.

    Article  PubMed  CAS  Google Scholar 

  89. Ceraul SM, Dreher-Lesnick SM, Mulenga A et al. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis. Infect Immun 2008; 76:5429–5435.

    Article  PubMed  CAS  Google Scholar 

  90. Ha EM, Oh CT, Bae YS et al. A direct role for dual oxidase in Drosophila gut immunity. Science 2005; 310:847–850.

    Article  PubMed  CAS  Google Scholar 

  91. Ha EM, Lee KA, Seo YY et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 2009; 10:949–957.

    Article  PubMed  CAS  Google Scholar 

  92. Graca-Souza AV, Maya-Monteiro C, Paiva-Silva GO et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol 2006; 36:322–335.

    Article  PubMed  CAS  Google Scholar 

  93. Lara FA, Lins U, Paiva-Silva G et al. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J Exp Biol 2003; 206:1707–1715.

    Article  PubMed  CAS  Google Scholar 

  94. Maya-Monteiro CM, Alves LR, Pinhal N et al. HeLp, a heme-transporting lipoprotein with an antioxidant role. Insect Biochem Mol Biol 2004; 34:81–88.

    Article  PubMed  CAS  Google Scholar 

  95. Citelli M, Lara FA, da Silva Vaz I Jr et al. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol Biochem Parasitol 2007; 151:81–88.

    Article  PubMed  CAS  Google Scholar 

  96. Kocan KM, Zivkovic Z, Blouin EF et al. Silencing of genes involved in Anaplasmamarginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Dev Biol 2009; 9:42.

    Article  PubMed  CAS  Google Scholar 

  97. Dreher-Lesnick SM, Mulenga A, Simser JA et al. Differential expression of two glutathione S-transferases identified from the American dog tick, Dermacentor variabilis. Insect Mol Biol 2006; 15:445–453.

    Article  PubMed  CAS  Google Scholar 

  98. He H, Chen AC, Davey RB et al. Characterization and molecular cloning of a glutathione S-transferase gene from the tick, Boophilus microplus (Acari: Ixodidae). Insect Biochem Mol Biol 1999; 29:737–743.

    Article  PubMed  CAS  Google Scholar 

  99. Tsuji N, Kamio T, Isobe T et al. Molecular characterization of a peroxiredoxin from the hard tick Haemaphysalis longicornis. Insect Mol Biol 2001; 10:121–129.

    Article  PubMed  CAS  Google Scholar 

  100. Rosa de Lima MF, Sanchez Ferreira CA, Joaquim de Freitas DR et al. Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) glutathione S-transferase. Insect Biochem Mol Biol 2002; 32:747–754.

    Article  Google Scholar 

  101. da Silva Vaz Jnr I, Imamura S, Ohashi K et al. Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S-transferase. Insect Mol Biol 2004; 13:329–335.

    Article  PubMed  Google Scholar 

  102. Cossio-Bayugar R, Miranda E, Holman PJ. Molecular cloning of a phospholipid-hydroperoxide glutathione peroxidase gene from the tick, Boophilus microplus (Acari: Ixodidae). Insect Biochem Mol Biol 2005; 35:1378–1387.

    Article  PubMed  CAS  Google Scholar 

  103. Narasimhan S, Sukumaran B, Bozdogan U et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2007; 2:7–18.

    Article  PubMed  CAS  Google Scholar 

  104. Mans BJ, Andersen JF, Francischetti IM et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol 2008; 38:42–58.

    Article  PubMed  CAS  Google Scholar 

  105. Yu D, Sheng Z, Xu X et al. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Peptides 2006; 27:31–35.

    Article  PubMed  CAS  Google Scholar 

  106. Liu Z, Liu H, Liu X et al. Purification and cloning of a novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:557–561.

    Article  PubMed  CAS  Google Scholar 

  107. Pichu S, Ribeiro JM, Mather TN. Purification and characterization of a novel salivary antimicrobial peptide from the tick, Ixodes scapularis. Biochem Biophys Res Commun 2009; 390:511–515.

    Article  PubMed  CAS  Google Scholar 

  108. Ribeiro JM, Alarcon-Chaidez F, Francischetti IM et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 2006; 36:111–129.

    Article  PubMed  CAS  Google Scholar 

  109. Esteves E, Fogaca AC, Maldonado R et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 2009; 33:913–919.

    Article  PubMed  CAS  Google Scholar 

  110. Sasaki SD, de Lima CA, Lovato DV et al. BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp Parasitol 2008; 118:214–220.

    Article  PubMed  CAS  Google Scholar 

  111. Esteves E, Lara FA, Lorenzini DM et al. Cellular and molecular characterization of an embryonic cell line (BME26) from the tick Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol 2008; 38:568–580.

    Article  PubMed  CAS  Google Scholar 

  112. Esteves E, Bastos CV, Zivkovic Z et al. Propagation of a Brazilian isolate of Anaplasma marginale with appendage in a tick cell line (BME26) derived from Rhipicephalus (Boophilus) microplus. Vet Parasitol 2009; 161:150–153.

    Article  PubMed  CAS  Google Scholar 

  113. de la Fuente J, Maritz-Olivier C, Naranjo V et al. Evidence of the role of tick subolesin in gene expression. Bmc Genomics 2008; 9:372.

    Article  PubMed  CAS  Google Scholar 

  114. de la Fuente J, Almazan C, Blas-Machado U et al. The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 2006; 24:4082–4095.

    Article  PubMed  CAS  Google Scholar 

  115. Galindo RC, Doncel-Perez E, Zivkovic Z et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev Comp Immunol 2009; 33:612–617.

    Article  PubMed  CAS  Google Scholar 

  116. Goto A, Matsushita K, Gesellchen V et al. Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice. Nat Immunol 2008; 9:97–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kopáček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kopáček, P., Hajdušek, O., Burešová, V., Daffre, S. (2010). Tick Innate Immunity. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_8

Download citation

Publish with us

Policies and ethics