Skip to main content

Mosquito Immunity

  • Chapter
Invertebrate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

Throughout their lifetime, mosquitoes are exposed to pathogens during feeding, through breaks in their cuticle and following pathogen-driven cuticular degradation. to resist infection, mosquitoes mount innate cellular and humoral immune responses that are elicited within minutes of exposure and can lead to pathogen death via three broadly defined mechanisms: lysis, melanization and hemocyte-mediated phagocytosis. This chapter reviews our current understanding of the mosquito immune system, with an emphasis on the physical barriers that prevent pathogens from entering the body, the organs and tissues that regulate immune responses and the mechanistic and molecular bases of immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nasci RS, Miller BR. Culicine mosquitoes and the agents they transmit. In: Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot: University Press of Colorado, 1996:85–97.

    Google Scholar 

  2. Gwadz R, Collins FH. Anopheline mosquitoes and the pathogens they transmit. In: Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot: University Press of Colorado, 1996:73–84.

    Google Scholar 

  3. Niaré O, Markianos K, Volz J et al. Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Science 2002; 298(5591):213–216.

    Article  PubMed  CAS  Google Scholar 

  4. Riehle MM, Markianos K, Niaré O et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 2006; 312(5773):577–579.

    Article  PubMed  CAS  Google Scholar 

  5. Beerntsen Bt, Luckhart S, Christensen BM. Brugia malayi and Brugia pahangi: inherent difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. J Parasitol 1989; 75(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  6. Castillo JC, Robertson AE, Strand MR. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol 2006; 36(12):891–903.

    Article  PubMed  CAS  Google Scholar 

  7. hernández-Martínez S, Lanz H, Rodríguez MH et al. Cellular-mediated reactions to foreign organisms inoculated into the hemocoel of Anopheles albimanus (Diptera: Culicidae). J Med Entomol 2002; 39(1):61–69.

    Article  PubMed  Google Scholar 

  8. Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J Parasitol 2003; 89(1):62–69.

    Article  PubMed  Google Scholar 

  9. Hillyer JF, Schmidt SL, Christensen BM. Hemocyte-mediated phagocytosis and melanization in the mosquito armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res 2003; 313(1):117–127.

    Article  PubMed  Google Scholar 

  10. Christensen BM, Li J, Chen C-C et al. Melanization immune responses in mosquito vectors. Trends Parasitol 2005; 21(4):192–199.

    Article  PubMed  CAS  Google Scholar 

  11. Dong Y, Dimopoulos G. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 2009; 284(15):9835–9844.

    Article  PubMed  CAS  Google Scholar 

  12. Hillyer JF, Estévez-Lao TY. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev Comp Immunol 2010; 34(2):141–149.

    Article  PubMed  CAS  Google Scholar 

  13. Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 2001; 31(3):219–229.

    Article  PubMed  CAS  Google Scholar 

  14. Luckhart S, Vodovotz Y, Cui L et al. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 1998; 95(10):5700–5705.

    Article  PubMed  CAS  Google Scholar 

  15. Molina-Cruz A, DeJong RJ, Charles B et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 2008; 283(6):3217–3223.

    Article  PubMed  CAS  Google Scholar 

  16. Bartholomay LC, Cho WL, Rocheleau TA et al. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 2004; 72(7):4114–4126.

    Article  PubMed  CAS  Google Scholar 

  17. Baton L, Robertson A, Warr E et al. Genome-wide transcriptomic profling of Anopheles gambiae hemocytes reveals pathogen-specific signatures upon bacterial challenge and Plasmodium berghei infection. BMC Genomics 2009; 10(1):257.

    Article  PubMed  CAS  Google Scholar 

  18. Walther CJ, Couche GA, Pfannenstiel MA et al. Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 1986; 52(4):650–653.

    PubMed  CAS  Google Scholar 

  19. Blanford S, Chan BHK, Jenkins N et al. Fungal pathogen reduces potential for malaria transmission. Science 2005; 308(5728):1638–1641.

    Article  PubMed  CAS  Google Scholar 

  20. Schnepf E, Crickmore N, Van Rie J et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62(3):775–806.

    PubMed  CAS  Google Scholar 

  21. Roberts LS, Janovy Jr.J. Foundations of parasitology. 8th ed. Boston: McGraw Hill Higher Education; 2009.

    Google Scholar 

  22. Ferdig MT, Beerntsen BT, Spray FJ et al. Reproductive costs associated with resistance in a mosquito-flarial worm system. Am J Trop Med Hyg 1993; 49(6):756–762.

    PubMed  CAS  Google Scholar 

  23. Ferguson HM, Read AF. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc Biol Sci 2002; 269(1497):1217–1224.

    Article  PubMed  CAS  Google Scholar 

  24. Scott TW, Lorenz LH. Reduction of Culiseta melanura fitness by eastern equine encephalomyelitis virus. Am J Trop Med Hyg 1998; 59(2):341–346.

    PubMed  CAS  Google Scholar 

  25. Styer LM, Meola MA, Kramer LD. West Nile virus infection decreases fecundity of Culex tarsalis females. J Med Entomol 2007; 44(6):1074–1085.

    Article  PubMed  Google Scholar 

  26. Schmidt O, Theopold U, Beckage NE. Insect and vertebrate Immunity: key similarities versus differences. In: Beckage NE, ed. Insect Immunology. San Diego: Academic Press, 2008:1–23.

    Chapter  Google Scholar 

  27. McGreevy PB, Bryan JH, Oothuman P et al. The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans R Soc Trop Med Hyg 1978; 72(4):361–368.

    Article  PubMed  CAS  Google Scholar 

  28. Abraham EG, Jacobs-Lorena M. Mosquito midgut barriers to malaria parasite development. Insect Biochem Mol Biol 2004; 34(7):667–671.

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez-Ceron L, Rodriguez MH, Chavez-Munguia B et al. Plasmodium vivax: impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Exp Parasitol 2007; 115(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  30. Kato N, Mueller CR, Fuchs JF et al. Evaluation of the function of a type I peritrophic matrix as a physical barrier for midgut epithelium invasion by mosquito-borne pathogens in Aedes aegypti. Vector Borne Zoonotic Dis 2008; 8(5):701–712.

    Article  PubMed  Google Scholar 

  31. Ito J, Ghosh A, Moreira LA et al. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 2002; 417(6887):452–455.

    Article  PubMed  CAS  Google Scholar 

  32. Santos JN, Lanfredi RM, Pimenta PFP. The invasion of the midgut of the mosquito Culex (Culex) quinquefasciatus Say, 1823 by the helminth Litomosoides chagasfilhoi Moraes Neto, Lanfredi and De Souza, 1997. J Invertebr Pathol 2006; 93(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Whitten MMA, Shiao S-H, Levashina EA. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 2006; 28(4):121–130.

    Article  PubMed  CAS  Google Scholar 

  34. Alavi Y, Arai M, Mendoza J et al. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum and their transmission by anopheles stephensi, anopheles gambiae and Aedes aegypti. Int J Parasitol 2003; 33(9):933–943.

    Article  PubMed  CAS  Google Scholar 

  35. Collins FH, Sakai RK, Vernick KD et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector anopheles gambiae. Science 1986; 234(4776):607–610.

    Article  PubMed  CAS  Google Scholar 

  36. Fraiture M, Baxter RHG, Steinert S et al. Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 2009; 5(3):273–284.

    Article  PubMed  CAS  Google Scholar 

  37. Osta MA, Christophides GK, Kafatos FC. Effects of mosquito genes on Plasmodium development. Science 2004; 303(5666):2030–2032.

    Article  PubMed  CAS  Google Scholar 

  38. Povelones M, Waterhouse RM, Kafatos FC et al. Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 2009; 324(5924):258–261.

    Article  PubMed  CAS  Google Scholar 

  39. Vernick KD, Fujioka H, Seeley DC et al. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, anopheles gambiae. Exp Parasitol 1995; 80(4):583–595.

    Article  PubMed  CAS  Google Scholar 

  40. Volz J, Müller HM, Zdanowicz A et al. A genetic module regulates the melanization response of Anopheles to Plasmodium. Cell Microbiol 2006; 8(9):1392–1405.

    Article  PubMed  CAS  Google Scholar 

  41. Dong Y, Aguilar R, Xi Z et al. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2006; 2(6):e52.

    Article  PubMed  CAS  Google Scholar 

  42. González-lázaro M, Dinglasan RR, Hernández-hernández FdlC et al. Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. Insect Biochem Mol Biol 2009; 39(5-6):395–402.

    Article  PubMed  CAS  Google Scholar 

  43. Lim J, Gowda DC Krishnegowda G et al. Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect Immun 2005; 73(5):2778–2789.

    Article  PubMed  CAS  Google Scholar 

  44. Sanders HR, Foy BD, Evans AM et al. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 2005; 35(11):1293–1307.

    Article  PubMed  CAS  Google Scholar 

  45. Xu X, Dong Y, Abraham EG et al. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. Mol Biochem Parasitol 2005; 142(1):76–87.

    Article  PubMed  CAS  Google Scholar 

  46. Blandin SA, Shiao S-H, Moita LF et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector anopheles gambiae. Cell 2004; 116(5):661–670.

    Article  PubMed  CAS  Google Scholar 

  47. Pinto SB, Lombardo F, Koutsos AC et al. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Aanopheles gambiae. Proc Natl acad Sci uSa 2009; 106(50):21270–21275.

    Article  PubMed  CAS  Google Scholar 

  48. Lai S-C, Chen C-C, Hou RF. Electron microscopic observations on wound-healing in larvae of the mosquito armigeres subalbatus (Diptera: culicidae). J Med Entomol 2001; 38(6):836–843.

    Article  PubMed  CAS  Google Scholar 

  49. Lai S-C, Chen C-C, Hou RF. Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito armigeres subalbatus (Diptera: Culicidae). J Med Entomol 2002; 39(2):266–274.

    Article  PubMed  CAS  Google Scholar 

  50. Bain O, Babayan S. Behaviour of flariae: morphological and anatomical signatures of their life style within the arthropod and vertebrate hosts. Filaria J 2003; 2(1):16.

    Article  PubMed  Google Scholar 

  51. Glenn JD, King JG, Hillyer JF. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J Exp Biol 2010; 213(4):541–550.

    Article  PubMed  Google Scholar 

  52. Morahan BJ, Wang L, Coppel RL. No TRAP, no invasion. Trends Parasitol 2009; 25(2):77–84.

    Article  PubMed  CAS  Google Scholar 

  53. Vanderberg JP. Studies on the motility of Plasmodium sporozoites. J Protozool 1974; 21(4):527–537.

    PubMed  CAS  Google Scholar 

  54. Hillyer JF, Schmidt SL, Christensen BM. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity. Microbes Infect 2004; 6(5):448–459.

    Article  PubMed  CAS  Google Scholar 

  55. Bartholomay LC, Mayhew GF, Fuchs JF et al. Profiling infection responses in the haemocytes of the mosquito. Aedes aegypti. Insect Mol Biol 2007; 16(6):761–776.

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Fuchs JF, Infanger L-C et al. Mosquito innate immunity: involvement of beta 1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Mol Biochem Parasitol 2005; 139(l):65–73.

    Article  PubMed  CAS  Google Scholar 

  57. Hillyer JF, Christensen BM. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol 2002; 117(5):431–440.

    Article  PubMed  CAS  Google Scholar 

  58. Hillyer JF, Schmidt SL, Fuchs JF et al. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol 2005; 7(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  59. Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Int J Parasitol 2007; 37(6):673–681.

    Article  PubMed  Google Scholar 

  60. Johnson JK, Rocheleau TA, Hillyer JF et al. A potential role for phenylalanine hydroxylase in mosquito immune responses. Insect Biochem Mol Biol 2003; 33(3):345–354.

    Article  PubMed  CAS  Google Scholar 

  61. Infanger L-C, Rocheleau TA, Bartholomay LC et al. The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes. Insect Biochem Mol Biol 2004; 34(12):1329–1338.

    Article  PubMed  CAS  Google Scholar 

  62. Shiao S-H, Higgs S, Adelman Z et al. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol 2001; 10(4):315–321.

    Article  PubMed  CAS  Google Scholar 

  63. Taft AS, Chen CC, Li J et al. Molecular cloning of two prophenoloxidase genes from the mosquito Aedes aegypti. Insect Mol Biol 2001; 10(1):97–103.

    Article  PubMed  CAS  Google Scholar 

  64. Bidla G, Dushay MS, Theopold U. Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GT Pases and the TNF homolog Eiger. J Cell Sci 2007; 120(Pt 7):1209–1215.

    Article  PubMed  CAS  Google Scholar 

  65. Shrestha S, Kim Y. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem Mol Biol 2008; 38(1):99–112.

    Article  PubMed  CAS  Google Scholar 

  66. Charroux B, Royet J. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci USA 2009; 106(24):9797–9802.

    Article  PubMed  CAS  Google Scholar 

  67. Jones JC The heart and associated tissues of Anopheles quadrimaculatus say (Diptera: Culicidae). J Morphol 1954; 94(1):71–124.

    Article  CAS  Google Scholar 

  68. Pal R. Nephrocytes in some Culicidae-Diptera. Indian J Entomol 1944; 6:143–148.

    Google Scholar 

  69. Barillas-Mury C, Han YS, Seeley D et al. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J 1999; 18(4):959–967.

    Article  PubMed  CAS  Google Scholar 

  70. Danielli A Kafatos FC, Loukeris TG. Cloning and characterization of four Anopheles gambiae serpin isoforms, differentially induced in the midgut by Plasmodium berghei invasion. J Biol Chem 2003; 278(6):4184–4193.

    Article  PubMed  CAS  Google Scholar 

  71. Martins GF, Pimenta PFP. Structural changes in fat body of Aedes aegypti caused by aging and blood feeding. J Med Entomol 2008; 45(6): 1102–1107.

    Article  PubMed  CAS  Google Scholar 

  72. Raikhel AS, Kokoza VA, Zhu J et al. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 2002; 32(10):1275–1286.

    Article  PubMed  CAS  Google Scholar 

  73. Bartholomay LC, Farid HA, Ramzy RM et al. Culex pipiens pipiens: characterization of immune peptides and the influence of immune activation on development of Wuchereria bancrofti. Mol Biochem Parasitol 2003; 130(l):43–50.

    Article  PubMed  CAS  Google Scholar 

  74. Lowenberger C, Charlet M, Vizioli J et al. Antimicrobial activity spectrum, cDNA cloning and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J Biol Chem 1999; 274(29):20092–20097.

    Article  PubMed  CAS  Google Scholar 

  75. Vizioli J, Bulet P, Hoffmann JA et al. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 2001; 98(22): 12630–12635.

    Article  PubMed  CAS  Google Scholar 

  76. Cao-Lormeau V-M. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands. Virol J 2009; 6:35.

    Article  PubMed  CAS  Google Scholar 

  77. Ghosh AK, Devenport M, Jethwaney D et al. Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the anopheles saglin proteins. PLoS Pathog 2009; 5(l):el000265.

    Google Scholar 

  78. Korochkina S, Barreau C, Pradel G et al. A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol 2006; 8(1):163–175.

    Article  PubMed  CAS  Google Scholar 

  79. Area B, Lombardo F, Francischetti IMB et al. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem Mol Biol 2007; 37(2):107–127.

    Article  CAS  Google Scholar 

  80. Area B, Lombardo F, Valenzuela JG et al. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 2005; 208(Pt 20):3971–3986.

    Article  Google Scholar 

  81. Choumet V, Carmi-Leroy A, Laurent C et al. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 2007; 7(18):3384–3394.

    Article  PubMed  CAS  Google Scholar 

  82. Dixit R, Sharma A, Mourya DT et al. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi. Int J Infect Dis 2009; 13(5):636–646.

    Article  PubMed  CAS  Google Scholar 

  83. Ribeiro JMC, Charlab R, Pham VM et al. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem Mol Biol 2004; 34(6):543–563.

    Article  PubMed  CAS  Google Scholar 

  84. Rosinski-Chupin I, Briolay J, Brouilly P et al. SAGE analysis of mosquito salivary gland transcriptomes during Plasmodium invasion. Cell Microbiol 2007; 9(3):708–724.

    Article  PubMed  CAS  Google Scholar 

  85. Serazin AC, Dana AN, Hillenmeyer ME et al. Comparative analysis of the global transcriptome of Anopheles funestus from Mali, West Africa. PLoS ONE 2009; 4(ll):e7976.

    Article  PubMed  CAS  Google Scholar 

  86. Thangamani S, Wikel SK. Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasit Vectors 2009; 2(1):34.

    Article  PubMed  CAS  Google Scholar 

  87. Pinto SB, Kafatos FC, Michel K. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Cell Microbiol 2008; 10(4):891–898.

    Article  PubMed  CAS  Google Scholar 

  88. Christophides GK, Zdobnov E, Barillas-Mury C et al. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298(5591): 159–165.

    Article  PubMed  CAS  Google Scholar 

  89. Holt RA, Subramanian GM, Halpern A et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002; 298(5591): 129–149.

    Article  PubMed  CAS  Google Scholar 

  90. Nene V, Wormian JR, Lawson D et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007;316(5832):1718–1723.

    Article  PubMed  CAS  Google Scholar 

  91. Waterhouse RM, Kriventseva EV, Meister S et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 2007; 316(5832):1738–1743.

    Article  PubMed  CAS  Google Scholar 

  92. Das S, Dong Y, Garver L et al. Specificity of the innate immune system: a closer look at the mosquito pattern-recognition receptor repertoire, sws Rolff J, Reynolds SE, eds. Insect Infection and Immunity. Oxford, Oxford University Press 2009: 69–85.

    Chapter  Google Scholar 

  93. Levashina EA, Moita LF, Blandin SA etal. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001; 104(5):709–718.

    Article  PubMed  CAS  Google Scholar 

  94. Moita LF, Wang-Sattler R, Michel K et al. In vivo identification of novel regulators and conserved pathways of phagocytosis in A. Gambiae. Immunity 2005; 23(l):65–73.

    Article  CAS  Google Scholar 

  95. Blandin SA, Wang-Sattler R, Lamacchia M et al. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 2009; 326(5949): 147–150.

    Article  PubMed  CAS  Google Scholar 

  96. Riehle MM, Xu J, Lazzaro BP et al. Anopheles gambiae APL1 is a family of variable LRR proteins required for Rell-mediated protection from the malaria parasite, Plasmodium berghei. PLoS ONE 2008; 3(ll):e3672.

    Article  PubMed  CAS  Google Scholar 

  97. Schnitger AKD, Yassine H, Kafatos FC et al. Two C-type lectins cooperate to defend Anopheles gambiae against Gram-negative bacteria. J Biol Chem 2009; 284(26):17616–17624.

    Article  PubMed  CAS  Google Scholar 

  98. Dimopoulos G, Richman A, Müller HM et al. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 1997; 94(21): 11508–11513.

    Article  PubMed  CAS  Google Scholar 

  99. Warr E, Das S, Dong Y et al. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. Insect Mol Biol 2008; 17(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  100. Garver LS, Xi Z, Dimopoulos G. Immunoglobulin superfamily members play an important role in the mosquito immune system. Dev Comp Immunol 2008; 32(5):519–531.

    Article  PubMed  CAS  Google Scholar 

  101. Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 2006; 4(7):e229.

    Article  PubMed  CAS  Google Scholar 

  102. Wang X, Zhao Q, Christensen BM. Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae and the fruitfly, Drosophila melanogaster, genomes. BMC Genomics 2005; 6:114.

    Article  PubMed  CAS  Google Scholar 

  103. Wang X, Rocheleau TA, Fuchs JF et al. A novel lectin with a fibrinogen-like domain and its potential involvement in the innate immune response of Armigeres subalbatus against bacteria. Insect Mol Biol 2004; 13(3):273–282.

    Article  PubMed  CAS  Google Scholar 

  104. Frolet C, Thoma M, Blandin SA et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 2006; 25(4):677–685.

    Article  PubMed  CAS  Google Scholar 

  105. Zou Z, Shin SW, Alvarez KS et al. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. Proc Natl Acad Sci USA 2008; 105(47): 18454–18459.

    Article  PubMed  CAS  Google Scholar 

  106. Bian G, Shin SW, Cheon H-M et al. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proc Natl Acad Sci USA 2005; 102(38):13568–13573.

    Article  PubMed  CAS  Google Scholar 

  107. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 2008; 4(7):e1000098.

    Article  PubMed  CAS  Google Scholar 

  108. Meister S, Kanzok SM, Zheng X-L et al. Immune signaling pathways regulating bacterial andmalaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci USA 2005; 102(32): 11420–11425.

    Article  PubMed  CAS  Google Scholar 

  109. Garver LS, Dong Y, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog 2009; 5(3):el000335.

    Article  CAS  Google Scholar 

  110. Gupta L, Molina-Cruz A Kumar S et al. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell Host Microbe 2009; 5(5):498–507.

    Article  PubMed  CAS  Google Scholar 

  111. Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 2009; 106(42):17841–17846.

    Article  PubMed  CAS  Google Scholar 

  112. Lowenberger C, Bulet P, Charlet M et al. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 1995; 25(7):867–873.

    Article  PubMed  CAS  Google Scholar 

  113. Steiner H, Hultmark D, Engström A et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981; 292(5820):246–248.

    Article  PubMed  CAS  Google Scholar 

  114. Luna C, Hoa NT, Lin H et al. Expression of immune responsive genes in cell lines from two different Anopheline species. Insect Mol Biol 2006; 15(6):721–729.

    Article  PubMed  Google Scholar 

  115. Shin SW, Kokoza V, Lobkov I et al. Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proc Natl Acad Sci USA 2003; 100(5):2616–2621.

    Article  PubMed  CAS  Google Scholar 

  116. Dimopoulos G, Seeley D, Wolf A et al. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J 1998; 17(21):6115–6123.

    Article  PubMed  CAS  Google Scholar 

  117. Erickson SM, Xi Z, Mayhew GF et al. Mosquito infection responses to developing filarial worms. PLoS Negl Trap Dis 2009; 3(10):e529.

    Article  CAS  Google Scholar 

  118. Kumar BA, Paily KP. Identification of immune-responsive genes in the mosquito Culex quinquefasciatus infected with the filarial parasite Wuchereria bancrofti. Med Vet Entomol 2008; 22(4):394–398.

    Article  PubMed  CAS  Google Scholar 

  119. Blandin SA Moita LF, Kocher T et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 2002; 3(9):852–856.

    Article  PubMed  CAS  Google Scholar 

  120. Bartholomay LC, Fuchs JF, Cheng L-L et al. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti. Insect Mol Biol 2004; 13(2):125–132.

    Article  PubMed  CAS  Google Scholar 

  121. Magalhaes T, Leandro DC, Ayres CFJ. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli. Acta Trop 2010; 113(2): 167–173.

    Article  PubMed  CAS  Google Scholar 

  122. Kim W, Koo H, Richman AM et al. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol 2004; 41(3):447–455.

    Article  PubMed  CAS  Google Scholar 

  123. Chen CC, Chen CS. Brugia pahangi: effects of melanization on the uptake of nutrients by microfilariae in vitro. Exp Parasitol 1995; 81(l):72–78.

    Article  PubMed  CAS  Google Scholar 

  124. Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 2005; 35(5):443–459.

    Article  PubMed  CAS  Google Scholar 

  125. Wang X, Rocheleau TA, Fuchs JF et al. Beta 1, 3-glucan recognition protein from the mosquito, Armigeres subalbatus, is involved in the recognition of distinct types of bacteria in innate immune responses. Cell Microbiol 2006; 8(10):1581–1590.

    Article  PubMed  CAS  Google Scholar 

  126. Volz J, Osta MA, Kafatos FC et al. The roles of two clip domain serine proteases in innate immune responses of the malaria vector Anopheles gambiae. J Biol Chem 2005; 280(48):40161–40168.

    Article  PubMed  CAS  Google Scholar 

  127. Paskewitz SM, Andreev O, Shi L. Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae. Insect Biochem Mol Biol 2006; 36(9):701–711.

    Article  PubMed  CAS  Google Scholar 

  128. Liu CT, Hou RF, Ashida M et al. Effects of inhibitors of serine protease, phenoloxidase and dopa decarboxylase on the melanization of Dirofilaria immitis microfilariae with Armigeres subalbatus haemolymph in vitro. Parasitology 1997; 115(Pt l):57–68.

    Article  PubMed  CAS  Google Scholar 

  129. Abraham EG, Pinto SB, Ghosh A et al. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc Natl Acad Sci USA 2005; 102(45): 16327–16332.

    Article  PubMed  CAS  Google Scholar 

  130. Michel K, Budd A, Pinto S et al. Anopheles gambiae SRPN2 facilitates midgut invasion by the malaria parasite Plasmodium berghei. EMBO Rep 2005; 6(9):891–897.

    Article  PubMed  CAS  Google Scholar 

  131. Cohuet A, Osta MA, Morlais I et al. Anopheles and Plasmodium: from laboratory models to natural systems in the field. EMBO Rep 2006; 7(12):1285–1289.

    Article  PubMed  CAS  Google Scholar 

  132. Michel K, Suwanchaichinda C, Morlais I et al. Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proc Natl Acad Sci USA 2006; 103(45):16858–16863.

    Article  PubMed  CAS  Google Scholar 

  133. Zhao X, Ferdig MT, Li J et al. Biochemical pathway of melanotic encapsulation of Brugia malayi in the mosquito, Armigeres subalbatus. Dev Comp Immunol 1995; 19(3):205–215.

    Article  PubMed  CAS  Google Scholar 

  134. Huang C-Y, Christensen BM, Chen C-C. Role of dopachrome conversion enzyme in the melanization of filarial worms in mosquitoes. Insect Mol Biol 2005; 14(6):675–682.

    Article  PubMed  CAS  Google Scholar 

  135. Huang C-Y, Chou S-Y, Bartholomay LC et al. The use of gene silencingto study the role of dopa decarboxylase in mosquito melanization reactions. Insect Mol Biol 2005; 14(3):237–244.

    Article  PubMed  CAS  Google Scholar 

  136. Paskewitz SM, Andreev O. Silencing the genes for dopa decarboxylase or dopachrome conversion enzyme reduces melanization of foreign targets in Anopheles gambiae. Comp Biochem Physiol B, Biochem Mol Biol 2008; 150(4):403–408.

    Article  PubMed  CAS  Google Scholar 

  137. Rivero A. Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol 2006; 22(5):219–225.

    Article  PubMed  CAS  Google Scholar 

  138. Luckhart S, Li K. Transcriptional complexity of the Anopheles stephensi nitric oxide synthase gene. Insect Biochem Mol Biol 2001; 31(3):249–256.

    Article  PubMed  CAS  Google Scholar 

  139. Luckhart S, Rosenberg R. Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene 1999; 232(l):25–34.

    Article  PubMed  CAS  Google Scholar 

  140. Akman-Anderson L, Olivier M, Luckhart S. Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. Infect Immun 2007; 75(8):4012–4019.

    Article  PubMed  CAS  Google Scholar 

  141. Han YS, Thompson J, Kafatos FC et al. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 2000; 19(22):6030–6040.

    Article  PubMed  CAS  Google Scholar 

  142. Peterson TML, Gow AJ, Luckhart S. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 2007; 42(1): 132–142.

    Article  PubMed  CAS  Google Scholar 

  143. Kumar S, Christophides GK, Cantera R et al. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci USA 2003; 100(24):14139–14144.

    Article  PubMed  CAS  Google Scholar 

  144. Lanz-Mendoza H, Hernandez-Martinez S, Ku-L6pez M et al. Superoxide anion in Anopheles albimanus hemolymph and midgut is toxic to Plasmodium berghei ookinetes. J Parasitol 2002; 88(4):702–706.

    PubMed  CAS  Google Scholar 

  145. Herrera-Ortiz A, Lanz-Mendoza H, Martinez-Barnetche J et al. Plasmodium berghei ookinetes induce nitric oxide production in Anopheles pseudopunctipennis midguts cultured in vitro. Insect Biochem Mol Biol 2004; 34(9):893–901.

    Article  PubMed  CAS  Google Scholar 

  146. Kumar S, Gupta L, Han YS etal. Inducible peroxidases mediate nitration of anopheles midgutcells undergoing apoptosis in response to Plasmodium invasion. J Biol Chem 2004; 279(51):53475–53482.

    Article  PubMed  CAS  Google Scholar 

  147. Moita LF, Vriend G, Mahairaki V et al. Integrins of Anopheles gambiae and a putative role of a new beta integrin, BINT2, in phagocytosis of E. coli. Insect Biochem Mol Biol 2006; 36(4):282–290.

    Article  PubMed  CAS  Google Scholar 

  148. Ellis RE, Jacobson DM, Horvitz HR. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 1991; 129(l):79–94.

    PubMed  CAS  Google Scholar 

  149. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 1983; 220(4603):1277–1279.

    Article  PubMed  CAS  Google Scholar 

  150. Mangahas PM, Zhou Z. Clearance of apoptotic cells in Caenorhabditis elegans. Semin Cell Dev Biol 2005; 16(2):295–306.

    Article  PubMed  CAS  Google Scholar 

  151. Jasinskiene N, Coates CJ, Benedict MQ et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 1998; 95(7):3743–3747.

    Article  PubMed  CAS  Google Scholar 

  152. Olson KE, Higgs S, Gaines PJ et al. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 1996; 272(5263):884–886.

    Article  PubMed  CAS  Google Scholar 

  153. Roberts L. Mosquitoes and disease. Science 2002; 298(5591):82–83.

    Article  PubMed  Google Scholar 

  154. Curtis C. Possible use of translocations to fix desirable genes in insect pest populations. Nature 1968; 218(5139):368–369.

    Article  PubMed  CAS  Google Scholar 

  155. Terenius O, Marinotti O, Sieglaff D et al. Molecular genetic manipulation of vector mosquitoes. Cell Host Microbe 2008; 4(5):417–423.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hillyer, J.F. (2010). Mosquito Immunity. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_12

Download citation

Publish with us

Policies and ethics