Skip to main content

Radiation-Induced Immune Modulation

  • Chapter
  • First Online:
Molecular Determinants of Radiation Response

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Ionizing radiation is commonly used to treat cancer, with the explicit goal of eliminating an in situ tumor through reasonably well-understood direct killing mechanisms. However, the tumors that afflict patients do not evolve on plastic dishes or in immune-compromised mice. Instead, tumors develop in hosts with an intact immune system, which may serve to edit and shape the immunological phenotype of a particular lesion. Radiotherapeutic treatment of a mature tumor in an intact host results in immunologically relevant phenotypic changes in the targeted tumor cells themselves, and also has effects on the multitude of other cells that make up the tumor-associated stroma. Although many of these changes are both poorly investigated and poorly understood, recent studies have provided a new level of insight into the immunological effects of radiation, both at a local, molecular level, as well as at a systemic, whole-body level. Many of the “off-target” effects of radiation therapy might be expected to be proinflammatory, but harnessing these effects in a synergistic treatment regimen will undoubtedly require a greater knowledge and appreciation of the manner in which ionizing radiation interacts with the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman JD, Davis MM (2003) MHC-peptide tetramers to visualize antigen-specific T cells. Curr Protoc Immunol Chapter 17: Unit 17.3

    Google Scholar 

  • Ammirante M, Luo JL et al (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    Article  PubMed  CAS  Google Scholar 

  • Anasagasti MJ, Olaso E et al (1997) Interleukin 1-dependent and -independent mouse melanoma metastases. J Natl Cancer Inst 89:645–651

    Article  PubMed  CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA et al (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  • Camphausen K, Moses MA et al (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211

    PubMed  CAS  Google Scholar 

  • Camphausen K, Moses MA et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63:1990–1993

    PubMed  CAS  Google Scholar 

  • Chakraborty M, Abrams SI et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170:6338–6347

    PubMed  CAS  Google Scholar 

  • Chakraborty M, Abrams SI et al (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64:4328–4337

    Article  PubMed  CAS  Google Scholar 

  • Cheever MA, Allison JP et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  • Chen Y, Williams J et al (2002) Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 12:26–33

    Article  PubMed  Google Scholar 

  • Chi KH, Liu SJ et al (2005) Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 28:129–135

    Article  PubMed  Google Scholar 

  • Danna EA, Sinha P et al (2004) Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res 64:2205–2211

    Article  PubMed  CAS  Google Scholar 

  • de Visser KE, Korets LV et al (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  Google Scholar 

  • de Visser KE, Eichten A et al (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  • Demaria S, Ng B et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    Article  PubMed  Google Scholar 

  • Demaria S, Kawashima N et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    PubMed  CAS  Google Scholar 

  • den Boer AT, van Mierlo GJ et al (2004) The tumoricidal activity of memory CD8+ T cells is hampered by persistent systemic antigen, but full functional capacity is regained in an antigen-free environment. J Immunol 172:6074–6079

    Google Scholar 

  • Drake CG, Jaffee E et al (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  PubMed  CAS  Google Scholar 

  • Flanigan RC, Mickisch G et al (2004) Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol 171:1071–1076

    Article  PubMed  Google Scholar 

  • Ganss R, Ryschich E et al (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62:1462–1470

    PubMed  CAS  Google Scholar 

  • Gulley JL, Arlen PM et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11:3353–3362

    Article  PubMed  CAS  Google Scholar 

  • Kaminski JM, Shinohara E et al (2005) The controversial abscopal effect. Cancer Treat Rev 31:159–172

    Article  PubMed  CAS  Google Scholar 

  • Kingsley DP (1975) An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol 48:863–866

    Article  PubMed  CAS  Google Scholar 

  • Korman AJ, Peggs KS et al (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Xin H et al (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15:114–123

    Article  PubMed  CAS  Google Scholar 

  • Lauri D, Needham L et al (1991) Tumor cell adhesion to endothelial cells: endothelial leukocyte adhesion molecule-1 as an inducible adhesive receptor specific for colon carcinoma cells. J Natl Cancer Inst 83:1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  PubMed  CAS  Google Scholar 

  • Madani I, De RK et al (2007) Predicting risk of radiation-induced lung injury. J Thorac Oncol 2:864–874

    Article  PubMed  Google Scholar 

  • Martin M, Lefaix J et al (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    Article  PubMed  CAS  Google Scholar 

  • McBride WH, Chiang CS et al (2004) A sense of danger from radiation. Radiat Res 162:1–19

    Article  PubMed  CAS  Google Scholar 

  • Mole RJ (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26:234–241

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Tokunaga N et al (2004) Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. Clin Cancer Res 10:3871–3880

    Article  PubMed  CAS  Google Scholar 

  • Nesslinger NJ, Sahota RA et al (2007) Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res 13:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Obeid M, Tesniere A et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  PubMed  CAS  Google Scholar 

  • Ohba K, Omagari K et al (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43:575–577

    Article  PubMed  CAS  Google Scholar 

  • Okawa T, Kita M et al (1989) Phase II randomized clinical trial of LC9018 concurrently used with radiation in the treatment of carcinoma of the uterine cervix. Its effect on tumor reduction and histology. Cancer 64:1769–1776

    Article  PubMed  CAS  Google Scholar 

  • Okunieff P, Chen Y et al (2008) Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 27:363–374

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  • Ramsdell F, Fowlkes BJ (1992) Maintenance of in vivo tolerance by persistence of antigen. Science 257:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Reits EA, Hodge JW et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Sauter B, Albert ML et al (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  PubMed  CAS  Google Scholar 

  • Schaue D, Comin-Anduix B et al (2008) T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res 14:4883–4890

    Article  PubMed  CAS  Google Scholar 

  • Scheer MG, Stollman TH et al (2008) Increased metabolic activity of indolent liver metastases after resection of a primary colorectal tumor. J Nucl Med 49:887–891

    Article  PubMed  Google Scholar 

  • Trikha M, Corringham R et al (2003) Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9:4653–4665

    PubMed  CAS  Google Scholar 

  • Weaver CT, Harrington LE et al (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  PubMed  CAS  Google Scholar 

  • Wersall PJ, Blomgren H et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45:493–497

    Article  PubMed  Google Scholar 

  • Zitvogel L, Apetoh L et al (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drake, C.G. (2011). Radiation-Induced Immune Modulation. In: DeWeese, T., Laiho, M. (eds) Molecular Determinants of Radiation Response. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8044-1_12

Download citation

Publish with us

Policies and ethics