Skip to main content

Modeling Tumor Growth in Oncology

  • Chapter
  • First Online:
Pharmacokinetics in Drug Development

Abstract

In cancer drug development, measurement of tumor growth is necessary for preclinical assessment of anticancer activity and clinical assessment of efficacy. This chapter reviews mathematical models of preclinical and clinical tumor growth. Issues and models with regards to mouse xenograft data will be highlighted.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4419-7937-7_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4419-7937-7_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Houk et al. discussed this model in another chapter in this book.

References

  • American Cancer Society. Cancer Facts and Figures: 2010. 2010.

    Google Scholar 

  • Araujo RP and McElwain LS (2004) A history of the study of solid tumor growth: the contribution of mathematical modeling. Bulletin of Mathematical Biology 66:1039–1091.

    Article  PubMed  CAS  Google Scholar 

  • Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S and Troconiz IF (2008) Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. European Journal of Cancer 44:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB and Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial C9741. Journal of Clinical Oncology 21:1431–1439.

    Article  PubMed  CAS  Google Scholar 

  • Claret L, Girard P, Hoff PM, Van Custem E, Zuideveld KP, Jorga K, Fagerberg J and Bruno R (2009) Model-based prediction of Phase III overall survival in colorectal cancer on the basis of Phase II tumor dynamics. Journal of Clinical Oncology 27:4103–4108.

    Article  PubMed  CAS  Google Scholar 

  • Clarke R (1997) Issues in the experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Research Treatment 46:225–278.

    Article  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D and Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European Journal of Cancer 45:228–247.

    Article  PubMed  CAS  Google Scholar 

  • Garber K (2010) Debate grows over mouse models of cancer. Journal of the National Cancer Institute 98:1176–1178.

    Google Scholar 

  • Goteti K, Garner CE, Utley L, Dai J, Ashwell S, Moustakas DT, Gonen M, Schwartz GK, Kern SE, Zabludoff S and Brassil PJ (2010) Preclinical pharmacokinetics/pharmacodynamic models to predict synergistic effects of co-administered anti-cancer agents. Cancer Chemotherapy and Pharmacology 66:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Greaves P, Williams A and Eve M (2004) First dose of potential new medicine to humans: how animals help. Nature Reviews Drug Discovery 3:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD and Motzer RJ (2009) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic–pharmacodynamic meta-analysis. Cancer Chemotherapy and Pharmacology 66:357–371.

    Article  PubMed  Google Scholar 

  • Inaba M, Kobayashi T, Tashiro T and Sakurai Y (1988) Pharmacokinetic approach to rational therapeutic doses for human tumor-bearing nude mice. Japanese Journal of Cancer Research 79:509–516.

    PubMed  CAS  Google Scholar 

  • Inaba M, Kobayashi T, Tashiro T, Sakurai Y, Maruo K, Ohnishi Y, Ueyama Y and Nomura T (1989) Evaluation of antitumor activity in a human breast tumor/nude mouse model with a special emphasis on treatment dose. Cancer 64:1577–1582.

    Article  PubMed  CAS  Google Scholar 

  • Jackson K, Chedid M, Evans R and Troconiz IF (2010) A novel PKPD model to describe the interaction of drug response of combination therapy: an application in preclinical oncology. Presented at the Population Analysis Group in Europe, Berlin.

    Google Scholar 

  • Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M and Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer 84:1424–1431.

    Article  PubMed  CAS  Google Scholar 

  • Jumbe NL, Xin Y, Leipold D, Crocker L, Dugger D, Mai E, Slikowski MX, Fielder PJ and Tibbitts J (2010) Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. Journal of Pharmacokinetics and Pharmacodynamics 37:221–242.

    Article  PubMed  CAS  Google Scholar 

  • Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. European Journal of Cancer 40:827–836.

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived – but they can be improved. Cancern Biology and Therapy 4, Suppl 1:S134–S139.

    Google Scholar 

  • Koch G, Walz A, Lahu G and Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. Journal of Pharmacokinetics and Pharmacodynamics 36:179–197.

    Article  PubMed  CAS  Google Scholar 

  • Kola I and Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery 3:711–715.

    Article  PubMed  CAS  Google Scholar 

  • Laird AK (1964) Dynamics of tumor growth. British Journal of Cancer 18:490–502.

    Article  Google Scholar 

  • Liang H and Sha N (2004) Modeling antitumor activity by using a nonlinear mixed effects model. Mathematical Biosciences 189:61–73.

    Article  PubMed  Google Scholar 

  • Lobo E and Balthasar J (2010) Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 4:Article 42.

    Google Scholar 

  • Magni P, Simeoni M, Poggesi I, Rochetti M and De Nicolao G (2006) A mathematical model to study the effects of drug administration on tumor growth dynamics. Mathematical Biosciences 200:127–151.

    Article  PubMed  CAS  Google Scholar 

  • Maruo K, Ueyama Y, Inaba M, Emura R, Ohnishi Y, Nakamura O, Sato O and Nomura T (1990) Responsiveness of subcutaneous human glioma xenografts to various antitumor agents. Anticancer Research 10:209–212.

    PubMed  CAS  Google Scholar 

  • Marusic M (1995) Mathematical models of tumor growth. Lecture presented at the Mathematical Colloquium in Osijek organized by the Croatian Mathematical Society.

    Google Scholar 

  • McHugh K and Kao S (2003) Response evaluation criteria in solid tumours (RECIST): problems and need for modifications in paediatric oncology? The British Journal of Radiology 76:433–436.

    Article  PubMed  CAS  Google Scholar 

  • McKee AE, Farrell AT, Pazdur R and Woodcock J (2010) The role of the U.S. Food and Drug Administration review process: clinical trial endpoints in oncology. Oncologist 15, Suppl 1:13–18.

    Article  PubMed  Google Scholar 

  • Miklavcic D, Jarm T, Karba R and Sersa G (1995) Mathematical modeling of tumor growth in mice following electrotherapy and bleomycin treatment. Mathematics and Computers in Simulation 39:597–602.

    Article  Google Scholar 

  • Miller AB, Hoogstraten B, Staquet M and Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Norton L (1988) A Gompertzian model of the human breast cancer growth. Cancer Research 48:7067–7081.

    PubMed  CAS  Google Scholar 

  • Norton L and Simon R (1976a) The growth curve of an experimental solid tumor following radiotherapy. Journal of the National Cancer Institute 58:1735–1741.

    Google Scholar 

  • Norton L and Simon R (1976b) Tumor size, sensitivity to therapy in the design of treatment protocols. Cancer Treatment Reports 61:1307–1317.

    Google Scholar 

  • Norton L, Dugan U, Hudis C, Young D, Farrell C, Tanaka Y, Theodoulou M and Traina T (2005) Optimizing chemotherapeutic dose-scheduling (CDS) by Norton–Simon modeling: capecitabine (Xeloda). Proceeding of the American Association of Cancer Research 46:1182-Abstract 5007.

    Google Scholar 

  • Poggesi I, Simeoni M, Germani M, De Nicolao G and Rocchetti M (2004) Population modeling of tumor growth in untreated mice. Presented at Population Approach Group in Europe (PAGE), Uppsala, Sweden.

    Google Scholar 

  • Ribba B, Watkin E, Tod M, Girard P, Grenier E, You B, Wei M, Giraudo E and Freyer G (2010) Combined analysis of tumor size and histological markers. Presented at the Population Analysis Group in Europe Meeting, Berlin.

    Google Scholar 

  • Rocchetti M, Poggesi I, Massimiliano G, Fiorentini F, Pellizzoni C, Zugoni P, Pesenti E, Simeoni M and De Nicolao G (2005) A pharmacokinetic–pharmacodynamic model for predicting tumour growth inhibition in mice: a useful tool in oncology drug development. Basic and Clinical Pharmacology and Toxicology 96:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Rochetti M, Simeoni M, Pesenti E, De Nicolao G and Poggesi I (2007) Predicting the active doses in humans from animal studies: a novel approach in oncology. European Journal of Cancer 1862:1868.

    Google Scholar 

  • Rygaard K and Spang-Thomsen M (1997) Quantitation and Gompertzian analysis of tumor growth. Breast Cancer Research Treatment 46:303–312.

    Article  PubMed  CAS  Google Scholar 

  • Sanga S, Sinek JP, Frieboes HB, Ferrari M, Fruehauf JP and Cristini V (2006) Mathematical modeling of cancer progression and response to chemotherapy. Expert Review of Anticancer Therapy 6:1361–1765.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LH, Ginsberg MS, DeCorato D, Rothenberg LN, Einstein S, Kijewski P and Panicek DM (2000) Evaluation of tumor measurements in oncology: use of file based and electronic techniques. Journal of Clinical Oncology 18:2179–2184.

    PubMed  CAS  Google Scholar 

  • Sharpless NE and DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Reviews. Drug Discovery 5:741–754.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, Oleksijew A, O’Connor JM, Wang B, Frost DJ, Bauch J, Marsh K, Tahir SK, Yang X, Tse C, Fesik SW, Rosenberg SH and Elmore SW (2008) Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clinical Cancer Research 14:3268–3277.

    Article  PubMed  CAS  Google Scholar 

  • Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I and Rochetti M (2004a) Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Research 64:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  • Simeoni M, Poggesi I, Germani M, De Nicolao G and Rocchetti M (2004b) Population modeling of tumor growth inhibition in vivo: application to anticancer drug development. Presented at Population Approach Group in Europe (PAGE), Uppsala, Sweden.

    Google Scholar 

  • Simpson-Herren L and Lloyd HH (1976) Kinetic parameter and growth curves for experimental tumor systems. Cancer Chemotherapy Reports 54:143–174.

    Google Scholar 

  • Sinek JP, Sanga S, Zheng X, Frieboes HB, Ferrari M and Cristini V (2009) Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. Journal of Mathematical Biology 58:484–510.

    Article  Google Scholar 

  • Stuyckens K, Perez Ruixo JJ, Vermeulen A and Cox E (2007) Modeling drug effects and resistance development on tumor growth dynamics. Presented at Population Approach Group in Europe (PAGE), Kobenhavn, Denmark.

    Google Scholar 

  • Sullivan PW and Salmon S (1972) Kinetics of tumor growth and regression in IgG multiple myeloma. Journal of Clinical Investigation 51:1697–1708.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka C, O’Reilly T, Kovarik JM, Shand N, Hazell K, Judson I, Raymond E, Zumstein-Mecker S, Stephan C, Boulay A, Hattenberger M, Thomas G and Lane HA (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. Journal of Clinical Oncology 26:1596–1602.

    PubMed  CAS  Google Scholar 

  • Tashiro N, Inaba M, Kobayashi T, Sakurai Y, Maruo K, Ohnishi Y, Ueyama Y and Nomura T (1989) Responsiveness of human lung cancer/nude mouse to antitumor agents in a model using clinically equivalent doses. Cancer Chemotherapy and Pharmacology 24:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Tham LS, Wang L, Soo RA, Lee SC, Lee HS, Yong WP, Goh BC and Holford NHG (2008) A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clinical Cancer Research 14:4213–4218.

    Article  PubMed  CAS  Google Scholar 

  • Therasse P, Arbuck S, Eisenhauer EA, Wanders J, Kaplan EL, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom A, Christian MC and Gwyther S (2000) New guidelines to evaluate the response to treatment to solid tumors. Journal of the National Cancer Institute 92:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Traina T, Theodoulou M, Higgins B, Kolinsky K, Packman K, Dugan U, Hudis C and Norton L (2006) In vivo activity of a novel regimen of capecitabine in a breast cancer xenograft model. Breast Cancer Research Treatment 100, Suppl 1:S2709-Abstract 6071.

    Google Scholar 

  • Traina T, Theodoulou M, Feigin K, Patil S, Tan KL, Edwards C, Dugan U, Norton L and Hudis C (2008) Phase I study of a novel capecitabine schedule based on the Norton–Simon mathematical model in patients with metastatic breast cancer. Journal of Clinical Oncology 26:1797–1802.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sung C, Dartois C, Ramchandani R, Booth BP, Rock E and Gobburu J (2009) Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clinical Pharmacology and Therapeutics 86:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Xu X (1987) The biological foundation of the Gompertz Model. International Journal of Bio-Medical Computing 20:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Yamakazi S, Skaptason J, Romero D, Lee JH, Zou HY, Christensen JG, Koup JR, Smith BJ and Koudriakova T (2008) Pharmacokinetic–pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models. Drug Metabolism and Disposition 36:1267–1274.

    Article  Google Scholar 

  • Yang J, Mager D and Straubinger RM (2010) Comparison of two pharmacodynamic transduction models for the analysis of tumor therapeutic responses in model systems. The AAPS Journal 12:1–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bonate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bonate, P.L. (2011). Modeling Tumor Growth in Oncology. In: Bonate, P., Howard, D. (eds) Pharmacokinetics in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7937-7_1

Download citation

Publish with us

Policies and ethics