Skip to main content

Catalytic Properties of the Eukaryotic Exosome

  • Chapter
RNA Exosome

Abstract

The eukaryotic exosome complex is built around the backbone of a 9-subunit ring similar to phosporolytic ribonucleases such as RNase PH and polynucleotide phosphorylase (PNPase). Unlike those enzymes, the ring is devoid of any detectable catalytic activities, with the possible exception of the plant version of the complex. Instead, the essential RNA decay capability is supplied by associated hydrolytic ribonucleases belonging to the Dis3 and Rrp6 families. Dis3 proteins are endowed with two different activities: the long known processive 3′–5′ exonucleolytic one and the recently discovered endonucleolytic one. Rrp6 proteins are distributive exonucleases. This chapter will review the current knowledge about the catalytic properties of theses nucleases and their interplay within the exosome holocomplex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell P, Petfalski E, Shevchenko A et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 1997; 91(4):457–466.

    Article  PubMed  CAS  Google Scholar 

  2. Zuo Y, Deutscher MP. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001; 29(5):1017–1026.

    Article  PubMed  CAS  Google Scholar 

  3. Allmang C, Petfalski E, Podtelejnikov A et al. The yeast exosome and human PM-Scl are related complexes of 3′ →5′ exonucleases. Genes Dev 1999; 13(16):2148–2158.

    Article  PubMed  CAS  Google Scholar 

  4. Koonin EV, Wolf YI, Aravind L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 2001; 11(2):240–252.

    Article  PubMed  CAS  Google Scholar 

  5. Symmons MF, Jones GH, Luisi BF. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity and regulation. Structure 2000; 8(11): 1215–1226.

    Article  PubMed  CAS  Google Scholar 

  6. Aloy P, Ciccarelli FD, Leutwein C et al. A complex prediction: three-dimensional model of the yeast exosome. EMBO Reports 2002; 3(7):628–635.

    Article  PubMed  CAS  Google Scholar 

  7. Buttner K, Wenig K, Hopfner KP. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 2005; 20(3):461–471.

    Article  PubMed  Google Scholar 

  8. Hernandez H, Dziembowski A, Taverner T et al. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Reports 2006; 7(6):605–610.

    PubMed  CAS  Google Scholar 

  9. Lorentzen E, Walter P, Fribourg S et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12(7):575–581.

    Article  PubMed  CAS  Google Scholar 

  10. Liu Q, Greimann JC, Lima CD. Reconstitution, activities and structure of the eukaryotic RNA exosome. Cell 2006; 127(6):1223–1237.

    Article  PubMed  CAS  Google Scholar 

  11. Bonneau F, Basquin J, Ebert J et al. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 2009; 139(3):547–559.

    Article  PubMed  CAS  Google Scholar 

  12. Dziembowski A, Lorentzen E, Conti E et al. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  13. Chekanova JA, Shaw RJ, Wills MA et al. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 2000; 275(42):33158–33166.

    Article  PubMed  CAS  Google Scholar 

  14. Burkard KT, Butler JS. Anuclear 3′–5′ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 2000; 20(2):604–616.

    Article  PubMed  CAS  Google Scholar 

  15. Staals RHJ, Bronkhorst AW, Schilders G et al. Dis3-like 1: a novel exoribonuclease associated with the human exosome. submitted.

    Google Scholar 

  16. Tomecki R, Kristiansen MS, Lykke-Andersen S et al. The human core exosome interacts with differentially localized processive ribonucleases: hDIS3 and hDIS3L. EMBO J, accepted manuscript.

    Google Scholar 

  17. Lange H, Holec S, Cognat V et al. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 2008; 28(9):3038–3044.

    Article  PubMed  CAS  Google Scholar 

  18. Chekanova JA, Gregory BD, Reverdatto SV et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2007; 131(7):1340–1353.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider C, Leung E, Brown J et al. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009; 37(4):1127–1140.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng ZF, Deutscher MP. Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem 2002; 277(24):21624–21629.

    Article  PubMed  CAS  Google Scholar 

  21. Frazao C, McVey CE, Amblar M et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 2006; 443(7107):110–114.

    Article  PubMed  CAS  Google Scholar 

  22. Lorentzen E, Basquin J, Tomecki R et al. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol Cell 2008; 29(6):717–728.

    Article  PubMed  CAS  Google Scholar 

  23. Makarova KS, Aravind L, Galperin MY et al. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core and the variable shell. Genome Res 1999; 9(7):608–628.

    PubMed  CAS  Google Scholar 

  24. Arcus VL, Backbro K, Roos A et al. Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease. J Biol Chem 2004; 279(16): 16471–16478.

    Article  PubMed  CAS  Google Scholar 

  25. Clissold PM, Ponting CP. PIN domains in nonsense-mediated mRNA decay and RNAi. Curr Biol 2000; 10(24):R888–R890.

    Article  PubMed  CAS  Google Scholar 

  26. Glavan F, Behm-Ansmant I, Izaurralde E et al. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J 2006; 25(21):5117–5125.

    Article  PubMed  CAS  Google Scholar 

  27. Mamolen M, Andrulis ED. Characterization of the Drosophila melanogaster Dis3 ribonuclease. Biochem Biophys Res Commun 2009; 390(3): 529–534.

    Article  PubMed  CAS  Google Scholar 

  28. Gunther T. Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnes Res 2006; 19(4):225–236.

    PubMed  CAS  Google Scholar 

  29. Chen CY, Gherzi R, Ong SE et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107(4):451–464.

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee D, Gao M, O’Connor JP et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 2002; 21(1–2):165–174.

    Article  PubMed  CAS  Google Scholar 

  31. Vincent HA, Deutscher MP. The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. J Biol Chem 2009; 284(1):486–494.

    Article  PubMed  CAS  Google Scholar 

  32. Vincent HA, Deutscher MP. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. J Mol Biol 2009; 387(3):570–583.

    Article  PubMed  CAS  Google Scholar 

  33. Lebreton A, Tomecki R, Dziembowski A et al. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008; 456(7224):993–996.

    Article  PubMed  CAS  Google Scholar 

  34. Schaeffer D, Tsanova B, Barbas A et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 2009; 16(1):56–62.

    Article  PubMed  CAS  Google Scholar 

  35. Amblar M, Arraiano CM. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. FEBS J 2005; 272(2):363–374.

    Article  PubMed  CAS  Google Scholar 

  36. Matos RG, Barbas A, Arraiano CM. RNase Rmutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Biochem J 2009; 423(2):291–301.

    Article  PubMed  CAS  Google Scholar 

  37. Midtgaard SF, Assenholt J, Jonstrup AT et al. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Proc Natl Acad Sci USA 2006; 103(32):11898–11903.

    Article  PubMed  CAS  Google Scholar 

  38. Schneider C, Anderson JT, Tollervey D. The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. Mol Cell 2007; 27(2):324–331.

    Article  PubMed  CAS  Google Scholar 

  39. Briggs MW, Burkard KT, Butler JS. Rrp6p, the yeast homologue of the human PM-Scl 100-kDaautoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 1998; 273(21):13255–13263.

    Article  PubMed  CAS  Google Scholar 

  40. vanHoof A, Lennertz P, Parker R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 2000; 19(6): 1357–1365.

    Article  PubMed  Google Scholar 

  41. Deutscher MP. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 2006; 34(2):659–666.

    Article  PubMed  CAS  Google Scholar 

  42. Li Z, Pandit S, Deutscher MP. 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci USA 1998; 95(6):2856–2861.

    Article  PubMed  CAS  Google Scholar 

  43. LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121(5):713–724.

    Article  PubMed  CAS  Google Scholar 

  44. Vanacova S, Wolf J, Martin G et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3(6):e189.

    Article  PubMed  Google Scholar 

  45. Araki Y, Takahashi S, Kobayashi T et al. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J 2001; 20(17):4684–4693.

    Article  PubMed  CAS  Google Scholar 

  46. Brown JT, Bai X, Johnson AW. The yeast antiviral proteins Ski2p, Ski3p and Ski8p exist as a complex in vivo. RNA (New York, N.Y.) 2000; 6(3):449–457.

    Article  CAS  Google Scholar 

  47. Tran H, Schilling M, Wirbelauer C et al. Facilitation of mRNA deadenylation and decay bythe exosome-bound, DExH protein RHAU. Mol Cell 2004; 13(1): 101–111.

    Article  PubMed  CAS  Google Scholar 

  48. Reinisch KM, Wolin SL. Emerging themes in noncoding RNA quality control. Curr Opin Struct Biol 2007; 17(2):209–214.

    Article  PubMed  CAS  Google Scholar 

  49. Cristodero M, Bottcher B, Diepholz M et al. The Leishmania tarentolae exosome: purification and structural analysis by electron microscopy. Mol Biochem Parasitol 2008; 159(1):24–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chlebowski, A., Tomecki, R., López, M.E.G., Séraphin, B., Dziembowski, A. (2010). Catalytic Properties of the Eukaryotic Exosome. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_6

Download citation

Publish with us

Policies and ethics