Skip to main content

The Human Exosome and Disease

  • Chapter
RNA Exosome

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 702))

Abstract

Long before the RNA degrading exosome was first described in the yeast Saccharomyces cerevisiae, the use of autoantibodies found in the sera of certain autoimmune patients allowed the identification of a complex of polypeptides which later appeared to be the human exosome. Today, the most extensively documented association of the exosome with disease is still its targeting by the immune system of such patients. The highest frequency of autoantibodies to components of the exosome complex is found in polymyositis-scleroderma overlap patients and therefore the exosome is termed PM/Scl autoantigen in the autoimmune field. More recently, one of the core components of the exosome was identified as a protein associated with chronic myelogenous leukemia. In this chapter we will describe the identification of the PM/Scl autoantigen from a historical perspective, discuss our current knowledge on the occurrence of autoantibodies to exosome components in autoimmune diseases and end with the data that connect the exosome with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Dijk EL, Schilders G, Pruijn GJ. Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA 2007; 13:1027–1035.

    Article  PubMed  Google Scholar 

  2. Allmang C, Petfalski E, Podtelejnikov A et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 1999; 13:2148–2158.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell P, Petfalski E, Shevchenko A et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 1997; 91:457–466.

    Article  PubMed  CAS  Google Scholar 

  4. Wolfe JF, Adelstein E, Sharp GC. Antinuclear antibody with distinct specificity for polymyositis. J Clin Invest 1977; 59:176–178.

    Article  PubMed  CAS  Google Scholar 

  5. Treadwell EL, Alspaugh MA, Wolfe JF et al. Clinical relevance of PM-1 antibody and physiochemical characterization of PM-1 antigen. J Rheumatol 1984; 11:658–662.

    PubMed  CAS  Google Scholar 

  6. Reichlin M, Maddison PJ, Targoff I et al. Antibodies to a nuclear/nucleolar antigen in patients with polymyositis overlap syndromes. J Clin Immunol 1984; 4:40–44.

    Article  PubMed  CAS  Google Scholar 

  7. Reimer G, Scheer U, Peters JM et al. Immunolocalization and partial characterization of a nucleolar autoantigen (PM-Scl) associated with polymyositis/scleroderma overlap syndromes. J Immunol 1986; 137:3802–3808.

    PubMed  CAS  Google Scholar 

  8. Alderuccio F, Chan EK, Tan EM. Molecular characterization of an autoantigen of PM-Scl in the polymyositis/ scleroderma overlap syndrome: a unique and complete human cDNA encoding an apparent 75-kD acidic protein of the nucleolar complex. J Exp Med 1991; 173:941–952.

    Article  PubMed  CAS  Google Scholar 

  9. Bluthner M, Bautz FA. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J Exp Med 1992; 176:973–980.

    Article  PubMed  CAS  Google Scholar 

  10. Ge Q, Frank MB, O’Brien C et al. Cloning of a complementary DNA coding for the 100-kD antigenic protein of the PM-Scl autoantigen. J Clin Invest 1992; 90:559–570.

    Article  PubMed  CAS  Google Scholar 

  11. Raijmakers R, Vree Egberts WT, van Venrooij WJ et al. The association of the human PM/Scl-75 autoantigen with the exosome is dependent on a newly identified N terminus. J Biol Chem 2003; 278:30698–30704.

    Article  PubMed  CAS  Google Scholar 

  12. Raijmakers R, Vree Egberts WT, van Venrooij WJ et al. Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. J Mol Biol 2002; 323:653–663.

    Article  PubMed  CAS  Google Scholar 

  13. Brouwer R, Allmang C, Raijmakers R et al. Three novel components of the human exosome. J Biol Chem 2001; 276:6177–6184.

    Article  PubMed  CAS  Google Scholar 

  14. Chen CY, Gherzi R, Ong SE et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107:451–464.

    Article  PubMed  CAS  Google Scholar 

  15. von Muhlen CA, Tan EM. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 1995; 24:323–358.

    Article  Google Scholar 

  16. Reimer G, Steen VD, Penning CA et al. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum 1988; 31:525–532.

    Article  PubMed  CAS  Google Scholar 

  17. Lehner B, Sanderson CM. A protein interaction framework for human mRNA degradation. Genome Res 2004; 14:1315–1323.

    Article  PubMed  CAS  Google Scholar 

  18. Schilders G, Raijmakers R, Raats JM et al. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33:6795–6804.

    Article  PubMed  CAS  Google Scholar 

  19. Schilders G, van Dijk EL, Pruijn GJ. C1D and hMtr4p associate with the human exosome subunit PM/ Scl-100 and are involved in prerRNA processing. Nucleic Acids Res 2007; 35:2564–2572.

    Article  PubMed  CAS  Google Scholar 

  20. Schilders G, Vree Egberts WT, Raijmakers R et al. C1D is a major autoantibody target in patients with the polymyositis-scleroderma overlap syndrome. Arthritis Rheum 2007; 56:2449–2454.

    Article  PubMed  CAS  Google Scholar 

  21. Brouwer R, Vree Egberts WT, Hengstman GJ et al. Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 2002; 4:134–138.

    Article  PubMed  CAS  Google Scholar 

  22. Raijmakers R, Renz M, Wiemann C et al. PM-Scl-75 is the main autoantigen inpatients with the polymyositis/ scleroderma overlap syndrome. Arthritis Rheum 2004; 50:565–569.

    Article  PubMed  Google Scholar 

  23. Bluthner M, Mahler M, Muller DB et al. Identification of an alpha-helical epitope region on the PM/ Scl-100 autoantigen with structural homology to a region on the heterochromatin p25beta autoantigen using immobilized overlapping synthetic peptides. J Mol Med 2000; 78:47–54.

    Article  PubMed  CAS  Google Scholar 

  24. Mahler M, Raijmakers R, Dahnrich C et al. Clinical evaluation of autoantibodies to a novel PM/Scl peptide antigen. Arthritis Res Ther 2005; 7:R704–R713.

    Article  PubMed  CAS  Google Scholar 

  25. Kuwana M, Okano Y, Kaburaki J et al. Racial differences in the distribution of systemic sclerosis-related serum antinuclear antibodies. Arthritis Rheum 1994; 37:902–906.

    Article  PubMed  CAS  Google Scholar 

  26. Hausmanowa-Petrusewicz I, Kowalska-Oledzka E, Miller FW et al. Clinical, sérologic and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997; 40:1257–1266.

    PubMed  CAS  Google Scholar 

  27. Chinoy H, Salway F, Fertig N et al. In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype. Arthritis Res Ther 2006; 8:R13.

    Article  PubMed  Google Scholar 

  28. O’Hanlon TP, Carrick DM, Targoff IN et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A,-B,-Cw,-DRB1 and-DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine (Baltimore) 2006; 85:111–127.

    Article  Google Scholar 

  29. Utz PJ, Gensler TJ, Anderson P. Death, autoantigen modifications and tolerance. Arthritis Res 2000; 2:101–114.

    Article  PubMed  CAS  Google Scholar 

  30. Hof D, Pruijn GJM, van Venrooij WJ et al. The role of cell death-specific modifications in breaking tolerance to self-antigens. In: Kettleworth CR, ed. Cell Apoptosis Research Advances. Hauppauge: Nova Science Publishers, 2007:179–202.

    Google Scholar 

  31. Schilders G, Raijmakers R, Malmegrim KC et al. Caspase-mediated cleavage of the exosome subunit PM/ Scl-75 during apoptosis. Arthritis Res Ther 2007; 9:R12.

    Article  PubMed  Google Scholar 

  32. Casciola-Rosen L, Andrade F, Ulanet D et al. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 1999; 190:815–826.

    Article  PubMed  CAS  Google Scholar 

  33. Mahler M, Raijmakers R. Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insights. Autoimmun Rev 2007; 6:432–437.

    Article  PubMed  CAS  Google Scholar 

  34. Gutierrez-Ramos R, Gonz Lez-Diaz V, Pacheco Tovar MG et al. A dermatomyositis and scleroderma overlap syndrome with a remarkable high titer of anti-exosome antibodies. Reumatismo 2008; 60:296–300.

    PubMed  CAS  Google Scholar 

  35. Yang XF, Wu CJ, Chen L et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res 2002; 62:5517–5522.

    PubMed  CAS  Google Scholar 

  36. Faderl S, Talpaz M, Estrov Z et al. Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 1999; 131:207–219.

    PubMed  CAS  Google Scholar 

  37. Collins RH, Jr., Shpilberg O, Drobyski WR et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15:433–444.

    PubMed  Google Scholar 

  38. Wu CJ, Yang XF, McLaughlin S et al. Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest 2000; 106:705–714.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou H, Zhang D, Wang Y et al. Induction of CML28-specific cytotoxic T-cell responses using cotransfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 2006; 347:200–207.

    Article  PubMed  CAS  Google Scholar 

  40. Xie LH, Sin FW, Cheng SC et al. Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene. Cancer Immunol Immunother 2008; 57:1029–1038.

    Article  PubMed  Google Scholar 

  41. Mao H, Geng Z, Liu W et al. Selection of HLA-A2 restricted CML28 peptide by artificial antigen-presenting cells. J Immunother 2008; 31:487–490.

    Article  PubMed  CAS  Google Scholar 

  42. Fang F, Hoskins J, Butler JS. 5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs. Mol Cell Biol 2004; 24:10766–10776.

    Article  PubMed  CAS  Google Scholar 

  43. Lum PY, Armour CD, Stepaniants SB et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004; 116:121–137.

    Article  PubMed  CAS  Google Scholar 

  44. Khabar KS. The AU-rich transcriptome: more than interferons and cytokines and its role in disease. J Interferon Cytokine Res 2005; 25: 1–10.

    Article  PubMed  CAS  Google Scholar 

  45. Xi L, Moscou MJ, Meng Y et al. Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. Plant Cell 2009; 21:3280–3295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Staals, R.H.J., Pruijn, G.J.M. (2010). The Human Exosome and Disease. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_11

Download citation

Publish with us

Policies and ethics