Skip to main content

Properties of the Regulatory RNA-Binding Protein HuR and its Role in Controlling miRNA Repression

  • Chapter
Regulation of microRNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 700))

Abstract

Gene expression in eukaryotes is subject to extensive regulation at posttranscriptional levels. One of the most important sites of control involves mRNA 3′ untranslated regions (3′utrs), which are recognized by RNA-binding proteins (RBPs) and microRNAs (miRNAs). These factors greatly influence translational efficiency and stability of target mRNAs and often also determine their cellular localization. HuR, a ubiquitously expressed member of the ElaV family of RBPs, has been implicated in regulation of stability and translation of over one hundred mRNAs in mammalian cells. Recent data indicate that some of the effects of HuR can be explained by its interplay with miRNAs. Binding of HuR may suppress the inhibitory effect of mirNAs interacting with the 3′UTR and redirect the repressed mRNA to polysomes for active translation. However, HuR can also synergize with miRNAs. The finding that HuR is able to disengage miRNAs from the repressed mrNa, or render them inactive, provides evidence that miRNa regulation is much more dynamic then originally anticipated. In this chapter we review properties of HuR and describe examples of the cross-talk between the protein and miRNAs, with emphasis on response of the regulation to cellular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen CY, Shyu AB. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol 1994; 14:8471–8482.

    PubMed  CAS  Google Scholar 

  2. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33:7138–7150.

    PubMed  Google Scholar 

  3. Bolognani F, Perrone-Bizzozero NI. RNA-protein interactions and control of mRNA stability in neurons. J Neurosci Res 2008; 86:481–489.

    PubMed  CAS  Google Scholar 

  4. Bickel M, Iwai Y, Pluznik DH et al. Binding of sequence-specific proteins to the adenosine-plus uridine-rich sequences of the murine granulocyte/macrophage colony-stimulating factor mRNA. Proc Natl Acad Sci USA 1992; 89:10001–10005.

    PubMed  CAS  Google Scholar 

  5. Espel E. The role of the AU-rich elements of mRNAs in controlling translation. Semin. cell Dev Biol 2005; 16:59–67.

    PubMed  CAS  Google Scholar 

  6. Chen CY, Shyu AB. Au-Rich elements: characterization and importance in mRNa degradation. Trends Biochem Sci 1995; 20:465–470.

    PubMed  CAS  Google Scholar 

  7. Bakheet T, Williams BR, Khabar KS. AEED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 2006; 34:D111–D114.

    PubMed  CAS  Google Scholar 

  8. Brennan CM, Steitz JA. HuR and mRNA Stability. Cell Mol Life Sci 2001; 58:266–277.

    PubMed  CAS  Google Scholar 

  9. Gingerich TJ, Feige JJ, LaMarre J. AU-rich elements and the control of gene expression through regulated mRNA stability. Anim Health Res Rev 2004; 5:49–63.

    PubMed  CAS  Google Scholar 

  10. Blackshear PJ. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 2002; 30:945–952.

    PubMed  CAS  Google Scholar 

  11. Zhang T, Kruys V, Huez G et al. AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 2002; 30:952–958.

    PubMed  CAS  Google Scholar 

  12. Garneau Nl, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007; 8:113–126.

    PubMed  CAS  Google Scholar 

  13. Perrone-Bizzozero N, Bolognani F. Role of HuD and other RNA-binding proteins in neural development and plasticity. J Neurosci Res 2002; 68:121–126.

    PubMed  CAS  Google Scholar 

  14. Pascale A, Amadio M, Quattrone A. Defining a neuron: neuronal ELAV proteins. Cell Mol Life Sci 2008; 65:128–140.

    PubMed  CAS  Google Scholar 

  15. Good PJ. A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci USA 1995; 92:4557–4561.

    PubMed  CAS  Google Scholar 

  16. Ma W.-J, Cheng S, Campbell C et al. Cloning and Characterization of HuR, a Ubiquitously Expressed ElAV-like Protein. J Biol Chem 1996; 271:8144–8151.

    PubMed  CAS  Google Scholar 

  17. Myer VE, Fan XC, Steitz JA. Identification of HuR as a protein imlicated in AUUUA-mediated mRNA decay. EMBO J 1997; 16:2130–2139.

    PubMed  CAS  Google Scholar 

  18. Wang X, Tanaka Hall TM. Structural basis for recognition of AU-rich element RNA by the HuD protein. Nature Structural Biology 2001; 8:141–145.

    PubMed  CAS  Google Scholar 

  19. Meisner NC, Hackermuller J, Uhl V et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem 2004; 5:1432–1447.

    PubMed  CAS  Google Scholar 

  20. De Silanes IL, Zhan M, Lal A et al. Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004; 101:2987–2992.

    Google Scholar 

  21. Yarovinsky TO, Butler NS, Monick MM et al. Early Exposure to IL-4 Stabilizes IL-4 mRNA in CD4+ T-Cells via RNA-Binding Protein HuR. J Immunol 2006; 177:4426–4435.

    PubMed  CAS  Google Scholar 

  22. Winter J, Roepcke S, Krause S et al. Comparative 3′UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer Cell lines. PLoS One 2008; 3:e2780.

    PubMed  Google Scholar 

  23. Ule J, Jensen K, Mele A et al. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 2005; 37:376–386.

    PubMed  CAS  Google Scholar 

  24. Chi SW, Zang JB, Mele A et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460:479–486.

    PubMed  CAS  Google Scholar 

  25. Fan XC, Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 1998; 17:3448–3460.

    PubMed  CAS  Google Scholar 

  26. Fan XC, Steitz JA. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 1998; 95:15293–15298.

    PubMed  CAS  Google Scholar 

  27. Gallouzi IE, Brennan CM, Steitz JA. Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA 2001; 7:1348–1361.

    PubMed  CAS  Google Scholar 

  28. Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 2001; 294:1895–1901.

    PubMed  CAS  Google Scholar 

  29. Guttinger S, Muhlhausser P, Koller-Eichhorn R et al. From The cover: Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl acad Sci USA 2004; 101:2918–2923.

    PubMed  Google Scholar 

  30. Rebane A, Aab A, Steitz JA. Transportins 1 and 2 are redundant nuclear import factors for hnrNP a1 and HuR. RNA 2004; 10:590–599.

    PubMed  CAS  Google Scholar 

  31. Cherry J, Karschner V, Jones H et al. HuR, an RNA-binding protein, involved in the control of cellular differentiation. In Vivo 2006; 20:17–23.

    PubMed  CAS  Google Scholar 

  32. Abdelmohsen K, Lal A, Kim HH et al. Post-transcriptional orchestration of an anti-apoptotic program by HuR. Cell cycle 2007; 6:1288–1292.

    PubMed  CAS  Google Scholar 

  33. Atasoy U, Watson J, Patel D et al. ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T-cell activation. J Cell Sci 1998; 111(Pt 21):3145–3156.

    PubMed  CAS  Google Scholar 

  34. Xu YZ, Di MS, Gallouzi I et al. RNA-binding protein HuR is required for stabilization of SLC1 A1 mRNA and SLC11A1 protein expression. Mol Cell Biol 2005; 25:8139–8149.

    PubMed  CAS  Google Scholar 

  35. Headley VV, Tanveer R, Greene SM et al. Reciprocal regulation of beta-adrenergic receptor mRNA stability by mitogen activated protein kinase activation and inhibition. Mol Cell Biochem 2004; 258:109–119.

    PubMed  CAS  Google Scholar 

  36. David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA 2007; 13:1453–1468.

    PubMed  CAS  Google Scholar 

  37. Keene JD. Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl acad Sci USA 1999; 96:5–7.

    PubMed  CAS  Google Scholar 

  38. Akamatsu W, Okano HJ, Osumi N et al. Mammalian ElaV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci USA 1999; 96:9885–9890.

    PubMed  CAS  Google Scholar 

  39. Dixon DA, Tolley ND, King PH et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001; 108:1657–1665.

    PubMed  CAS  Google Scholar 

  40. López de Silanes I, Fan J, Galbán CJ et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 2004; 12:49–59.

    Google Scholar 

  41. Erkinheimo TL, Sivula A, Lassus H et al. Cytoplasmic HuR expression correlates with epithelial cancer cell but not with stromal Cell cyclooxygenase-2 expression in mucinous ovarian carcinoma. Gynecol oncol 2005; 99:14–19.

    PubMed  CAS  Google Scholar 

  42. Heinonen M, Fagerholm R, Aaltonen K et al. Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res 2007; 13:6959–6963.

    PubMed  CAS  Google Scholar 

  43. Hostetter C, Licata LA, Witkiewicz A et al. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol Ther 2008; 7:1496–1506.

    PubMed  CAS  Google Scholar 

  44. Hasegawa H, Kakuguchi W, Kuroshima T et al. HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells. Br J Cancer 2009; 100:1943–1948.

    PubMed  CAS  Google Scholar 

  45. Wang J, Zhao W, Guo Y et al. The expression of RNA-binding protein HuR in nonsmall Cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology 2009; 76:420–429.

    PubMed  CAS  Google Scholar 

  46. López de Silanes I, Lal A, Gorospe M. HuR—Post-transcriptional Paths to Malignancy. RNA Biology 2005;2:e11–e13.

    Google Scholar 

  47. Doller A, Pfeilschifter J, Eberhardt W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 2008; 20:2165–2173.

    PubMed  CAS  Google Scholar 

  48. Wang W, Furneaux H, Cheng H et al. HuR regulates p21 mRNA Stabilization by UV Light. Mol Cell Biol 2000; 20:760–769.

    PubMed  CAS  Google Scholar 

  49. Westmark CJ, Bartleson VB, Malter JS. RhoB mRNA is stabilized by HuR after UV light. Oncogene 2005; 24:502–511.

    PubMed  CAS  Google Scholar 

  50. Abdelmohsen K, Kuwano Y, Kim HH et al. Post-transcriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 2008; 389:243–255.

    PubMed  CAS  Google Scholar 

  51. Yaman I, Fernandez J, Sarkar B et al. Nutritional control of mRNA stability is mediatedby a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 2002; 277:41539–41546.

    PubMed  CAS  Google Scholar 

  52. Winzen R, Kracht M, Ritter B et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechansim. EMBO J 1999; 18:4969–4980.

    PubMed  CAS  Google Scholar 

  53. Ming XF, Stoecklin G, Lu M et al. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001; 21:5778–5789.

    PubMed  CAS  Google Scholar 

  54. Subbaramaiah K, Marmao TP, Dixon DA et al. Regulation of cyclooxygenase-2 mRNA stability by taxanes. Evidence for involvement of p38, MAPKAPK-2 and HuR. J Biol chem 2003; 278:37637–37647.

    PubMed  CAS  Google Scholar 

  55. Wang W, Fan J, Yang X et al. AMP-Activated Kinase Regulates Cytoplasmic HuR. Mol Cell Biol 2002; 22:3425–3436.

    PubMed  CAS  Google Scholar 

  56. Liu L, Rao JN, Zou T et al. Polyamines regulate c-Myc translation through chk2-dependent HuR phosphorylation. Mol Biol Cell 2009; 20:4885–4898.

    PubMed  CAS  Google Scholar 

  57. Abdelmohsen K, Pullmann R, Jr., Lal A et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007; 25:543–557.

    PubMed  CAS  Google Scholar 

  58. Kim HH, Abdelmohsen K, Lal A et al. Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 2008; 22:1804–1815.

    PubMed  CAS  Google Scholar 

  59. Doller A, Huwiler A, Mueller R et al. Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for post-transcriptional regulation of cyclooxygenase-2. Mol Biol Cell 2008; 18:2137–2148.

    Google Scholar 

  60. Doller A, Akoole, Huwiler A et al. Posttranslational modification of the AU-rich element bindingprotein HuR by protein kinase cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol 2008; 28:2608–2625.

    PubMed  CAS  Google Scholar 

  61. Doller A, Schlepckow K, Schwalbe H et al. Tandem phosphorylation of serine 221 and 318 by PKC {delta} coordinates mRNA binding and nucleo-cytoplasmic shuttling of HuR. Mol Cell Biol 2010; Epub.

    Google Scholar 

  62. Laird-Offringa IA Elfferich P van der Eb AJ. Rapid c-myc mRNA degradation does t require A + U-rich sequences or complete translation of the mRNA. Nucleic acids res 1991; 192387–2394.

    PubMed  CAS  Google Scholar 

  63. Mazroui R, Di MS, Clair E et al. Caspase-mediated cleavage of HuR in the cytoplasm contributes to pp32/ PHAP-I regulation of apoptosis. J Cell Biol 2008; 180:113–127.

    PubMed  CAS  Google Scholar 

  64. Datta K, Mondal S, Sinha S et al. Role of elongin-binding domain of von hippel lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal Cell carcinoma. Oncogene 2005; 24:7850–7858.

    PubMed  CAS  Google Scholar 

  65. Cho SJ, Zhang J, Chen X. RNPC1 modulates the RNA-binding activity of and cooperates with, HuR to regulate p21 mRNA stability. Nucleic acids res 2010.

    Google Scholar 

  66. Akool E, Kleinert H, Hamada FM et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003; 23:4901–4916.

    CAS  Google Scholar 

  67. Jeyaraj SC, Singh M, Ayupova DA et al. Transcriptional control of human antigen R by bone morphogenetic protein. J Biol Chem 2010; 285:4432–4440.

    PubMed  CAS  Google Scholar 

  68. Al-Ahmadi W, Al-Ghamdi M, Al-Haj L et al. Alternative polyadenylation variants of the RNA binding protein, HuR: abundance, role of AU-rich elements and auto-Regulation. Nucleic acids res 2009; 37:3612–3624.

    PubMed  CAS  Google Scholar 

  69. Yi J, Chang N, Liu X et al. Reduced nuclear export of HuR mRNA by HuR is linked to the loss of HuR in replicative senescence. Nucleic acids res 2009; Epub.

    Google Scholar 

  70. Lopez DeSilanes I, Fan J, Yang X et al. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003; 22:7146–7154.

    Google Scholar 

  71. Annabi B, Currie JC, Moghrabi A et al. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res 2007; 31:1277–1284.

    PubMed  CAS  Google Scholar 

  72. Abdelmohsen K, Srikantan S, Kuwano Y et al. Mir-519 reduces Cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl acad Sci USA 2008; 105:20297–20302.

    PubMed  CAS  Google Scholar 

  73. Guo X, Wu Y, Hartley RS. microRNA-125a represses Cell growth by targeting HuR in breast cancer. RNA Biol 2009; 6:575–583.

    PubMed  CAS  Google Scholar 

  74. Peng SS-Y, Chen C-YA, Xu N et al. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 1998; 17:3461–3470.

    PubMed  CAS  Google Scholar 

  75. Ma W-J, Chung S, Furneaux H. The ELAV-like proteins bind to AU-rich elements and to the poly(a) tail of mRNA. Nucl acids res 1997; 25:3564–3569.

    PubMed  CAS  Google Scholar 

  76. Mazan-Mamczarz K, Galban S, Lopez DS et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl acad Sci USA 2003; 100:8354–8359.

    PubMed  CAS  Google Scholar 

  77. Galban S, Martindale JL, Mazan-Mamczarz K et al. Influence of the RNA-binding protein HuR in pVhl-regulated p53 expression in renal carcinoma cells. Mol Cell Biol 2003; 23:7083–7095.

    PubMed  CAS  Google Scholar 

  78. Tong X, Pelling JC. Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog 2009; 48:118–129.

    PubMed  CAS  Google Scholar 

  79. Lal A, Kawai T, Yang X et al. Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. EMBO J 2005; 24:1852–1862.

    PubMed  CAS  Google Scholar 

  80. Galban S, Kuwano Y, Pullmann R, Jr. et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol 2008; 28:93–107.

    PubMed  CAS  Google Scholar 

  81. Kawai T, Lal A, Yang X et al. Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 2006; 26:3295–3307.

    PubMed  CAS  Google Scholar 

  82. Kuwano Y, Kim HH, Abdelmohsen K et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008; 28:4562–4575.

    PubMed  CAS  Google Scholar 

  83. Gantt KR, Cherry J, Richardson M et al. The regulation of glucose transporter (GLUT1) expression by the RNA binding protein HuR. J Cell Biochem 2006; 99:565–574.

    PubMed  CAS  Google Scholar 

  84. Bhattacharyya SN, Habermacher R, Martine U et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125:1111–1124.

    PubMed  CAS  Google Scholar 

  85. Lafon I, Carballes F, Brewer G et al. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 1998; 16:3413–3421.

    PubMed  CAS  Google Scholar 

  86. Millard SS, Vidal A, Markus M et al. A U-rich element in the 5′ untranslated region is necessary for the translation of p27 mRNA. Mol Cell Biol 2000; 20:5947–5959.

    PubMed  CAS  Google Scholar 

  87. Kullmann M, Gopfert U, Siewe B et al. ElaV/Hu proteins inhibit p27 translation via an IrES element in the p27 5′UTR. Genes Dev 2002; 16:3087–3099.

    PubMed  CAS  Google Scholar 

  88. Leandersson K, Riesbeck K, Andersson T. Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res 2006; 34:3988–3999.

    PubMed  CAS  Google Scholar 

  89. Zhu H, Zhou HL, Hasman RA et al. Hu proteins regulate polyadenylation by blocking sites containing u-rich sequences. J Biol chem 2007; 282:2203–2210.

    PubMed  CAS  Google Scholar 

  90. Spångberg K, Wiklund L, Schwartz S. HuR, a Protein Implicated in Oncogene and Growth Factor mRNA Decay, Binds to the 3′ Ends of Hepatitis C Virus RNA of Both Polarities. Virology 2000; 274:378–390.

    PubMed  Google Scholar 

  91. Korf M, Jarczak D, Beger C et al. Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J Hepatol 2005; 43:225–234.

    PubMed  CAS  Google Scholar 

  92. Rivas-Aravena A, Ramdohr P, Vallejos M et al. The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. Virology 2009; 392:178–185.

    PubMed  CAS  Google Scholar 

  93. Lal A, Mazan-Mamczarz K, Kawai T et al. Concurrent versus individual binding of HuR and AIF1 to common labile target mRNAs. EMBO J 2004; 23:3092–3102.

    PubMed  CAS  Google Scholar 

  94. Sureban SM, Murmu N, Rodriguez P et al. Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of coX-2 mRNA translation. Gastroenterology 2007; 132:1055–1065.

    PubMed  CAS  Google Scholar 

  95. Sureban SM, Ramalingam S, Natarajan G et al. Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene 2008; 27:4544–4556.

    PubMed  CAS  Google Scholar 

  96. Blaxall BC, Pellett AC, Wu SC et al. Purification and characterization of beta-adrenergic receptor mRNA-binding proteins. J Biol Chem 2000; 275:4290–4297.

    PubMed  CAS  Google Scholar 

  97. Nguyen CM, Chalmel F, Agius E et al. Temporally regulated traffic ofHuR and its associated ARE-containing mRNAs from the chromatoid body to polysomes during mouse spermatogenesis. PLoS One 2009; 4:e4900.

    Google Scholar 

  98. Gallouzi I-E, Brennan CM, Stenberg MG et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl acad Sci USA 2000; 97:3073–3078.

    PubMed  CAS  Google Scholar 

  99. Kedersha N, Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002; 30:963–969.

    PubMed  CAS  Google Scholar 

  100. Kedersha N, Stoecklin G, Ayodele M et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005; 169:871–884.

    PubMed  CAS  Google Scholar 

  101. Kasashima K, Sakashita E, Saito K et al. Complex formation of the neuron-specific ELAV-like Hu RNA-binding proteins. Nucl acids res 2002; 30:4519–4526.

    PubMed  CAS  Google Scholar 

  102. Meisner NC, Hintersteiner M, Mueller K et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat chem Biol 2007; 3:508–515.

    PubMed  CAS  Google Scholar 

  103. Soller M, White K. ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation. Mol Cell Biol 2005; 25:7580–7591.

    PubMed  CAS  Google Scholar 

  104. Toba G, White K. The third RNArecognitionmotifofDrosophila ElaV protein hasaroleinmultimerization. Nucleic acids res 2008; 36:1390–1399.

    PubMed  CAS  Google Scholar 

  105. Fialcowitz-White EJ, Brewer BY, Ballin JD et al. Specific protein domains mediate cooperative assembly of HuR oligomers on au-rich mRNA-destabilizing sequences. J Biol Chem 2007; 282:20948–20959.

    PubMed  CAS  Google Scholar 

  106. Meisner NC, Hintersteiner M, Seifert JM et al. Terminal adenosyltransferase activity of post-transcriptional regulator HuR revealed by confocal on-bead screening. J Mol Biol 2009; 386:435–450.

    PubMed  CAS  Google Scholar 

  107. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat rev Genet 2008; 9:102–114.

    PubMed  CAS  Google Scholar 

  108. Lagos-Quintana M, Rauhut R, Meyer J et al. New microRNAs from mouse and human. RNA 2003; 9:175–179.

    PubMed  CAS  Google Scholar 

  109. Chang J, Nicolas E, Marks D et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004; 1:106–113.

    PubMed  CAS  Google Scholar 

  110. Hatzoglou M, Fernandez J, Yaman I et al. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr 2004; 24:377–399.

    PubMed  CAS  Google Scholar 

  111. Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat rev Mol Cell Biol 2007; 8:9–22.

    PubMed  CAS  Google Scholar 

  112. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007; 25:635–646.

    PubMed  CAS  Google Scholar 

  113. Pillai RS, Bhattacharyya SN, Artus CG et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 2005; 309:1573–1576.

    PubMed  CAS  Google Scholar 

  114. Liu J, Valencia-Sanchez Ma, Hannon GJ et al. microRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005; 7:719–723.

    PubMed  CAS  Google Scholar 

  115. Andrei MA, Ingelfinger D, Heintzmann R et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 2005; 11:717–727.

    PubMed  CAS  Google Scholar 

  116. Ashraf SI, Mcloon AL, Sclarsic SM et al. Synaptic protein synthesis associated with memory is regulated by the rISc pathway in Drosophila. Cell 2006; 124:191–205.

    PubMed  CAS  Google Scholar 

  117. Schratt GM, Tuebing F, Nigh EA et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439:283–289.

    PubMed  CAS  Google Scholar 

  118. Kedde M, Strasser MJ, Boldajipour B et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 2007; 131:1273–1286.

    PubMed  CAS  Google Scholar 

  119. Huang J, Liang Z, Yang B et al. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 G (APOBEC3G) and its family members. J Biol Chem 2007; 282:33632–33640.

    PubMed  CAS  Google Scholar 

  120. Kim HH, Kuwano Y, Srikantan S et al. HuR recruits let-7/rISc to repress c-Myc expression. Genes Dev 2009; 23:1743–1748.

    PubMed  CAS  Google Scholar 

  121. Nolde MJ, Saka N, Reinert KL et al. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 2007; 305:551–563.

    PubMed  CAS  Google Scholar 

  122. Galgano A, Forrer M, Jaskiewicz L et al. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 2008; 3:e3164.

    PubMed  Google Scholar 

  123. Schratt G. microRNAs at the synapse. Nat Rev Neurosci 2009; 10:842–849.

    PubMed  CAS  Google Scholar 

  124. Vasudevan S, Steitz JA. Au-Rich-Element-Mediatedupregulation of Translation by FXR1 and Argonaute 2. Cell 2007; 128:1105–1118.

    PubMed  CAS  Google Scholar 

  125. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318:1931–1934.

    PubMed  CAS  Google Scholar 

  126. Kim HH, Yang X, Kuwano Y et al. Modification at HuR(S242) alters HuR localization and proliferative influence. Cell Cycle 2008; 7:3371–3377.

    PubMed  CAS  Google Scholar 

  127. Li H, Park S, Kilburn B et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. J Biol chem 2002; 277:44623–44630.

    PubMed  CAS  Google Scholar 

  128. Brennan CM, Gallouzi I-E, Steitz JA. Protein Ligands to HuR Modulate Its Interaction with target mRNAs In Vivo. J Cell Biol 2000; 151:1–13.

    PubMed  CAS  Google Scholar 

  129. Kwak H, Jeong KC, Chae MJ et al. Flavonoids inhibit the au-rich element binding of huc. BMB rep 2009; 42:41–46.

    PubMed  CAS  Google Scholar 

  130. Chae MJ, Sung HY, Kim EH et al. Chemical inhibitors destabilize HuR binding to the AU-rich element of TNf-alpha mRNA. Exp Mol Med 2009; 41:824–831.

    PubMed  CAS  Google Scholar 

  131. Benoit RB, Meisner NC, Kallen J et al. The x-ray crystal structure on the first RNA recognition motif and site-corrected mutagenosis suggest a possible HuR redox sensing mechanism. J Mol Biol 2010; in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole-Claudia Meisner or Witold Filipowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meisner, NC., Filipowicz, W. (2010). Properties of the Regulatory RNA-Binding Protein HuR and its Role in Controlling miRNA Repression. In: Großhans, H. (eds) Regulation of microRNAs. Advances in Experimental Medicine and Biology, vol 700. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7823-3_10

Download citation

Publish with us

Policies and ethics