Skip to main content

Volcanic Eruptions: Stochastic Models of Occurrence Patterns

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Data

Temporal Models

Volcanic Regimes

Spatial Aspects

Yucca Mountain

Interactions with Earthquakes

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Onset:

The beginning of an eruption. The term event will be used interchangeably.

Repose:

Periods during which an eruption is not in progress.

Onset time:

Time at which an eruption begins. The ith onset time will be denoted t i , for \({i=1,\ldots,n}\).

Inter-onset time :

Time between successive onsets, denoted by \({r_i = t_{i+1} - t_i}\), for \({i = 1,\ldots,n-1}\). In many papers this is termed the repose time , which we shall use interchangeably, although the latter is strictly the time between the end of one eruption and the start of the next.

Polygenetic vent:

Site of multiple events, in contrast to monogenetic vents, at which only one eruption occurs. The latter occur predominately in volcanic fields.

Absolute time:

is denoted by t or s, with the latter usually being the time of the last known event. The elapsed time since the last known event is denoted by u, or, equivalently, \({t-s}\).

A parameter estimate:

of the parameter λ, say, is denoted by \({\hat{\lambda}}\).

Bibliography

Primary Literature

  1. Bacon CR (1982) Time‐predictable bimodal volcanism in the Coso range, California. Geology 10:65–69

    Google Scholar 

  2. Bain LJ (1978) Statistical Analysis of Reliability and Life Testing Models. Marcel Dekker, New York

    Google Scholar 

  3. Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int, 171:921–942

    Google Scholar 

  4. Bebbington MS, Lai CD (1996) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600

    Google Scholar 

  5. Bebbington MS, Lai CD (1996) Statistical analysis of New Zealand volcanic occurrence data. J Volcanol Geotherm Res 74:101–110

    CAS  Google Scholar 

  6. Bebbington MS, Lai CD (1998) A generalised negative binomial and applications. Commun Statist Theor Methods 27:2515–2533

    Google Scholar 

  7. Behncke B, Neri M (2003) Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy). Canadian J Earth Sci 40:1405–1411

    Google Scholar 

  8. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37:425–430

    CAS  Google Scholar 

  9. Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire. Bull Volcanol 56:87–97

    Google Scholar 

  10. Cardaci C, Falsaperla S, Gasperini P, Lombardo G, Marzocchi W, Mulargia F (1993) Cross‐correlation analysis of seismic and volcanic data at Mt Etna volcano, Italy. Bull Volcanol 55:596–603

    Google Scholar 

  11. Carta S, Figari R, Sartoris G, Sassi R, Scandone R (1981) A statistical model for Vesuvius and its volcanological implications. Bull Volcanol 44:129–151

    Google Scholar 

  12. Casetti G, Frazzetta G, Romano R (1981) A statistical analysis in time of the eruptive events on Mount Etna (Italy) from 1323 to 1980. J Volcanol Geotherm Res 44:283–294

    Google Scholar 

  13. Coleman NM, Abramson LR, Marsh BD (2004) Testing claims about volcanic disruption of a potential geologic repository at Yucca Mountain, Nevada. Geophys Res Lett 31:L24601

    Google Scholar 

  14. Condit CD, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108:1225–1241

    Google Scholar 

  15. Connor CB (1990) Cinder cone clustering in the TransMexican volcanic belt: Implications for structural and petrologic models. J Geophys Res 95:19395–19405

    Google Scholar 

  16. Connor CB, Condit CD, Crumpler LS, Aubele JC (1992) Evidence of regional structural controls on vent distribution: Springerville volcanic field, Arizona. J Geophys Res 97:349–359

    Google Scholar 

  17. Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107–10125

    Google Scholar 

  18. Connor CB, Sparks RSJ, Mason RM, Bonadonna C, Young SR (2003) Exploring links between physical and probabilistic models of volcanic eruptions: The Soufriere Hills volcano, Montserrat. Geophys Res Lett 30:1701

    Google Scholar 

  19. Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small‐volume basaltic volcanism: Application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432

    Google Scholar 

  20. Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26:655–658

    CAS  Google Scholar 

  21. Crandell DR, Mullineaux DR, Rubin M (1975) Mount St. Helens volcano: Recent and future behaviour. Science 187:438–441

    CAS  Google Scholar 

  22. Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288

    Google Scholar 

  23. Crowe BM, Johnson ME, Beckman RJ (1982) Calculation of the probability of volcanic disruption of a high-level radioactive waste repository within southern Nevada, USA. Radioact Waste Manag 3:167–190

    Google Scholar 

  24. Crowe BM, Wallmann P, Bowker LM (1998) Probabilistic modeling of volcanism data: Final volcanic hazard studies for the Yucca Mountain site. In: Perry FV et al. (eds) Volcanism Studies: Final Report for the Yucca Mountain project. Los Alamos National Laboratory Report LA-13478, Los Alamos National Laboratory, Los Alamos, 415 pp

    Google Scholar 

  25. Decker RW (1986) Forecasting volcanic eruptions. Ann Rev Earth Planet Sci 14:267–291

    Google Scholar 

  26. De la Cruz-Reyna S (1991) Poisson‐distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67

    Google Scholar 

  27. De la Cruz-Reyna S (1993) Random patterns of occurrence of explosive eruptions at Colima vulcano, Mexico. J Volcanol Geotherm Res 55:51–68

    Google Scholar 

  28. De la Cruz-Reyna S, Carrasco‐Nunez G (2002) Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) volcano, eastern Mexican volcanic belt. J Volcanol Geotherm Res 113:307–318

    Google Scholar 

  29. Dubois J, Cheminee JL (1991) Fractal analysis of eruptive activity of some basaltic volcanoes. J Volcanol Geotherm Res 45:197–208

    Google Scholar 

  30. Eliasson J, Larsen G, Gudmundsson MT, Sigmundsson F (2006) Probabilistic model for eruptions and associated flood events in the Katla caldera, Iceland. Comput Geosci 10:179–200

    Google Scholar 

  31. Gasperini P, Gresta S, Mulargia F (1990) Statistical analysis of seismic and eruptive activities at Mt. Etna during 1978–1987. J Volcanol Geotherm Res 40:317–325

    Google Scholar 

  32. Geomatrix Consultants (1996) Probabilistic volcanic hazard analysis for Yucca Mountain, Nevada. Report BA0000000‐1717-220-00082. Geomatrix Consultants, San Francisco

    Google Scholar 

  33. Godano C, Civetta L (1996) Multifractal analysis of Vesuvius volcano eruptions. Geophys Res Lett 23:1167–1170

    Google Scholar 

  34. Gusev AA, Ponomareva VV, Braitseva OA, Melekestsev IV, Sulerzhitsky LD (2003) Great explosive eruptions on Kamchatka during the last 10,000 years: Self‐similar irregularity of the output of volcanic products. J Geophys Res 108(B2):2126

    Google Scholar 

  35. Guttorp P, Thompson ML (1991) Estimating second‐order parameters of volcanicity from historical data. J Amer Statist Assoc 86:578–583

    Google Scholar 

  36. Ho CH (1990) Bayesian analysis of volcanic eruptions. J Volcanol Geotherm Res 43:91–98

    Google Scholar 

  37. Ho CH (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23:167–173

    Google Scholar 

  38. Ho CH (1992) Risk assessment for the Yucca Mountain high-level nuclear waste repository site: Estimation of volcanic disruption. Math Geol 24:347–364

    Google Scholar 

  39. Ho CH (1992) Statistical control chart for regime identification in volcanic time‐series. Math Geol 24:775–787

    Google Scholar 

  40. Ho CH (1995) Sensitivity in volcanic hazard assessment for the Yucca Mountain high-level nuclear waste repository site: The model and the data. Math Geol 27:239–258

    Google Scholar 

  41. Ho CH, Smith EI (1997) Volcanic hazard assessment incorporating expert knowledge: application to the Yucca Mountain region, Nevada, USA. Math Geol 29:615–627

    Google Scholar 

  42. Ho CH, Smith EI (1998) A spatial‐temporal/3-D model for volcanic hazard assessment: application to the Yucca Mountain region, Nevada. Math Geol 30:497–510

    Google Scholar 

  43. Ho CH, Smith EI, Feuerbach DL, Naumann TR (1991) Eruptive probability calculation for the Yucca Mountain site, USA: Statistical estimation of recurrence rates. Bull Volcanol 54:50–56

    Google Scholar 

  44. Jaquet O, Low S, Martinelli B, Dietrich V, Gilby D (2000) Estimation of volcanic hazards based on Cox stochastic processes. Phys Chem Earth (A) 25:571–579

    Google Scholar 

  45. Jupp TE, Pyle DM, Mason BG, Dade WB (2004) A statistical model for the timing of earthquakes and volcanic eruptions influenced by periodic processes. J Geophys Res 109:B02206

    Google Scholar 

  46. Klein FW (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12:1–35

    Google Scholar 

  47. Klein FW (1984) Eruption forecasting at Kilauea Volcano, Hawaii. J Geophys Res 89:3059–3073

    Google Scholar 

  48. Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890

    CAS  Google Scholar 

  49. Lockwood JP (1995) Mauna Loa eruptive history – the preliminary radiocarbon record, Hawai`i. In: Rhodes JM, Lockwood JP (eds) Mauna Loa Revealed: Structure, Composition, History, and Hazards. American Geophysical Union Monograph, vol 92. American Geophysical Union, Washington DC, pp 81–94

    Google Scholar 

  50. Lutz TM (1986) An analysis of the orientation of large-scale crustal structures: A statistical approach based on areal distributions of pointlike features. J Geophys Res 91:421–434

    Google Scholar 

  51. Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of pointlike features and its immplications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100:17659–17670

    Google Scholar 

  52. Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242

    Google Scholar 

  53. Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208

    Google Scholar 

  54. Martin DP, Rose WI (1981) Behavioral patterns of Fuego volcano, Guatemala. J Volcanol Geotherm Res 10:67–81

    Google Scholar 

  55. Marzocchi W (1996) Chaos and stochasticity in volcanic eruptions the case of Mount Etna and Vesuvius. J Volcanol Geotherm Res 70:205–212

    CAS  Google Scholar 

  56. Marzocchi W (2002) Remote seimic influence on large explosive eruptions. J Geophys Res 107:2018. doi:10.1029/2001JB000307

    Google Scholar 

  57. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201

    Google Scholar 

  58. Marzocchi W, Scandone R, Mulargia F (1993) The tectonic setting of Mount Vesuvius and the correlation between its eruptions and the earthquakes of the southern Apennines. J Volcanol Geotherm Res 58:27–41

    Google Scholar 

  59. Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204

    Google Scholar 

  60. Marzocchi W, Zaccarelli L, Boschi E (2004) Phenomenological evidence in favor of a remote seimic coupling for large volcanic eruptions. Geophys Res Lett 31:L04601

    Google Scholar 

  61. Mason BG, Pyle DM, Dade WB, Jupp T (2004) Seasonality of volcanic eruptions. J Geophys Res 109:B04206

    Google Scholar 

  62. Mauk FJ, Johnston MJS (1973) On the triggering of volcanic erutpions by earth tides. J Geophys Res 78:3356–3362

    Google Scholar 

  63. Medina Martinez F (1983) Analysis of the eruptive history of the Volcan de Colima, Mexico (1560–1980). Geof Int 22:157–178

    Google Scholar 

  64. Mulargia F (1992) Time association between series of geophysical events. Phys Earth Plan Int 71:147–153

    Google Scholar 

  65. Mulargia F, Gasperini P, Tinti S (1987) Identifying regimes in eruptive activity: An application to Etna volcano. J Volcanol Geotherm Res 34:89–106

    Google Scholar 

  66. Mulargia F, Marzocchi W, Gasperini P (1992) Statistical identification of physical patterns which accompany eruptive activity on Mount Etna, Sicily. J Volcanol Geotherm Res 53:289–296

    Google Scholar 

  67. Mulargia F, Tinti S, Boschi E (1985) A statistical analysis of flank eruptions on Etna volcano. J Volcanol Geotherm Res 23:263–272

    Google Scholar 

  68. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Google Scholar 

  69. Nishi Y, Inoue M, Tnaka T, Murai M (2001) Analysis of time sequences of explosive volcanic eruptions of Sakurajima. J Phys Soc Japan 70:1422–1428

    CAS  Google Scholar 

  70. Nostro C, Stein RS, Cocco M, Belardinelli ME, Marzocchi W (1998) Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J Geophys Res 103:24487–24504

    Google Scholar 

  71. Pyle DM (1998) Forecasting sizes and repose times of future extreme volcanic events. Geology 26:367–370

    Google Scholar 

  72. Reyment RA (1969) Statistical analysis of some volcanologic data regarded as series of point events. Pure Appl Geophys 74:57–77

    Google Scholar 

  73. Salvi F, Scandone R, Palma C (2006) Statistical analysis of the historical activity of Mount Etna, aimed at the evaluation of volcanic hazard. J Volcanol Geotherm Res 154:159–168

    CAS  Google Scholar 

  74. Sandri L, Marzocchi W, Gasperini P (2005) Some insights on the occurrence of recent volcanic eruptions of Mount Etna volcano (Sicily, Italy). Geophys J Int 163:1203–1218

    Google Scholar 

  75. Santacroce R (1983) A general model for the behaviour of the Somma-Vesuvius volcanic complex. J Volcanol Geotherm Res 17:237–248

    CAS  Google Scholar 

  76. Scandone R, Arganese G, Galdi F (1993) The evaluation of volcanic risk in the Vesuvian area. J Volcanol Geotherm Res 58:263–271

    Google Scholar 

  77. Scandone R, Giacomelli L, Gasparini P (1993) Mount Vesuvius: 2000 years of volcanological observations. J Volcanol Geotherm Res 58:5–25

    Google Scholar 

  78. Settle M, McGetchin TR (1980) Statistical analysis of persistent explosive activity at Stromboli, 1971: Implications for eruption prediction. J Volcanol Geotherm Res 8:45–58

    Google Scholar 

  79. Sharp ADL, Lombardo G, David PM (1981) Correlation between eruptions of Mount Etna, Sicily, and regional earthquakes as seen in historical records from AD 1582. Geophys J R astr Soc 65:507–523

    Google Scholar 

  80. Sheridan MF (1992) A Monte Carlo technique to estimate the probability of volcanic dikes. In: High-Level Radioactive Waste Management: Proceedings of the Third Annual International Conference, Las Vegas, April 12–16, 1992. American Nuclear Society, La Grange Park, pp 2033–2038

    Google Scholar 

  81. Shimazaki K, Nakata T (1980) Time‐predictable recurrence model for large earthquakes. Geophys Res Lett 7:279–282

    Google Scholar 

  82. Siebert L, Simkin T (2002) Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions, Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. http://www.volcano.si.edu/world/. Accessed 20 Jun 2008

  83. Simkin T (1993) Terrestrial volcanism in space and time. Ann Rev Earth Panet Sci 21:427–452

    Google Scholar 

  84. Simkin T (1994) Distant effects of volcanism – how big and how often? Science 264:913–914

    CAS  Google Scholar 

  85. Smith EI, Keenan DL, Plank T (2002) Episodic volcanism and hot mantle: Implications for volcanic hazard studies at the proposed nuclear waste repository at Yucca Mountain, Nevada. GSA Today April 2002:4–9

    Google Scholar 

  86. Solow AR (1993) Estimating record inclusion probability. The Amer Statist 47:206–208

    Google Scholar 

  87. Solow AR (2001) An empirical Bayes analysis of volcanic eruptions. Math Geol 33:95–102

    Google Scholar 

  88. Sornette A, Dubois J, Cheminee JL, Sornette D (1991) Are sequences of volcanic eruptions deterministically chaotic? J Geophys Res 96:11931–11945

    Google Scholar 

  89. Stothers RB (1989) Seasonal variations of volcanic eruption frequencies. Geophys Res Lett 16:453–455

    Google Scholar 

  90. Takada A (1997) Cyclic flank-vent and central‐vent eruption patterns. Bull Volcanol 58:539–556

    Google Scholar 

  91. Telesca L, Cuomo V, Lapenna V, Macchiato M (2002) Time‐clustering analysis of volcanic occurrence sequences. Phys Earth Planet Int 131:47–62

    Google Scholar 

  92. Telesca L, Lapenna V (2005) Identifying features in time‐occurrence sequences of volcanic eruptions. Environmentrics 16:181–190 58

    Google Scholar 

  93. Thorlaksson JE (1967) A probability model of volcanoes and the probability of eruptions of Hekla and Katla. Bull Volcanol 31:97–106

    CAS  Google Scholar 

  94. Turner M, Cronin S, Bebbington M, Platz T (2008) Developing a probabilistic eruption forecast for dormant volcanos; a case study from Mt Taranaki, New Zealand. Bull Volcanol 70:507–515

    Google Scholar 

  95. Turner M, Cronin S, Smith I, Bebbington M, Stewart RB (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34

    Google Scholar 

  96. Vere-Jones D (1992) Statistical methods for the description and display of earthquake catalogs. In: Walden AT, Guttorp P (eds) Statistics in the Environmental and Earth Sciences, Edward Arnold, London, pp 220–246

    Google Scholar 

  97. Vere-Jones D, Ozaki T (1982) Some examples of statistical estimation applied to earthquake data. Ann Inst Statist Math 34:189–207

    Google Scholar 

  98. Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130

    Google Scholar 

  99. Wadge G (1982) Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes. J Geophys Res 87:4035–4049

    Google Scholar 

  100. Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: An application to the volcanic vents of the Michoacan–Guanajuato volcanic field, Mexico. Geology 16:815–818

    Google Scholar 

  101. Wadge G, Guest JE (1981) Steady‐state magma discharge at Etna 1971–1981. Nature 294:548–550

    Google Scholar 

  102. Wadge G, Walker WPL, Guest JE (1975) The output of Etna volcano. Nature 255:385–387

    Google Scholar 

  103. Wickman FE (1966) Repose‐period patterns of volcanoes. I. Volcanic eruptions regarded as random phenomena. Arch Mineral Geol 4:291–367

    Google Scholar 

  104. Wickman FE (1966) Repose‐period patterns of volcanoes. V. General discussion and a tentative stochastic model. Arch Mineral Geol 4:351–367

    Google Scholar 

  105. Wickman FE (1976) Markov models of repose‐period patterns of volcanoes. In: Merriam DF (ed) Random Processes in Geology. Springer, New York, pp 135–161

    Google Scholar 

  106. Young PC (2006) New approaches to volcanic time‐series analsyis. In Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in Volcanology. Geological Society of London, London, pp 143–160

    Google Scholar 

Books and Reviews

  1. Guttorp P (1995) Stochastic Modeling of Scientific Data, Chapman and Hall, London

    Google Scholar 

  2. Hill DP, Pollitz FP, Newhall C (2002) Earthquake‐volcano interactions. Phys Today 55:41–47

    Google Scholar 

  3. Lindsay JK (2004) Statistical Analysis of Stochastic Processes in Time. Cambridge University Press, Cambridge

    Google Scholar 

  4. Karr AF (1991) Point Processes and Their Statistical Inference, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  5. Mader HM, Coles SG, Connor CB, Connor LJ (eds) (2006) Statistics in Volcanology. Geological Society of London, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Bebbington, M.S. (2011). Volcanic Eruptions: Stochastic Models of Occurrence Patterns. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_57

Download citation

Publish with us

Policies and ethics