Skip to main content

Perspectives on Genetics and Genomics of the Brassicaceae

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

The Arabidopsis thaliana genome project laid the foundation for the advancement of structural and functional genomics in this species which resulted in an ever-increasing understanding of a multitude of processes at the molecular level. Ongoing progress in high-throughput genome sequencing technologies will now allow for a boost of genome sequencing activities in various Brassicaceae species, accessions, and even populations. Such studies will provide unique insights into the evolution of plant genomes and may ultimately advance breeding of the Brassica crops. The development of genome-wide transcriptome analyses in Brassicaceae species other than A. thaliana will also heavily depend on the rapid advancement of cost-effective high-throughput sequencing technologies. Important contributions to fields as diverse as developmental biology, evolutionary biology, population genetics, plant physiology, and ecology can be expected since genetically tractable Brassicaceae species that are particularly suitable for the study of a specific trait and/or adaptation are currently developed as additional model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

Bacterial artificial chromosome

cDNA:

Complementary DNA

dbEST:

Expressed sequence tags database

EST:

Expressed sequence tag

Gb:

Giga base

GS FLX:

Genome sequencer FLX

GS 20:

Genome sequencer 20

MPSS:

Massively parallel signature sequencing

RNAi:

RNA interference

SAGE:

Serial analysis of gene expression

siRNA:

Small interfering RNA

SOLiD:

Sequencing by oligonucleotide ligation and detection

SNP:

Single nucleotide polymorphism

References

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435

    Article  CAS  PubMed  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL (2006) Molecules and morphology: comparative developmental genetics of the Brassicaceae. Plant Syst Evol 259:199–215

    Article  CAS  Google Scholar 

  • Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Bressan RA, Zhang C, Zhang H et al (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    Article  CAS  PubMed  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IA et al (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 11:2124–2136

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N et al (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  CAS  PubMed  Google Scholar 

  • Earley K, Lawrence RJ, Pontes O et al (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC (2010). Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Yoo SY, Pires JC et al (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS One 4:e4760

    Article  PubMed  Google Scholar 

  • Girke T, Todd J, Ruuska S et al (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  CAS  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S et al (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Li WH, Chen ZJ (2007) External factors accelerate expression divergence between duplicate genes. Trends Genet 23:162–166

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Hindemitt T, Meyers BC, Mayer KF (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669

    Article  Google Scholar 

  • Hammond JP, Bowen HC, White PJ et al (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, Craigon DJ et al (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods 1:10

    Article  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947

    Article  CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li P et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A et al (2003) PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lawrence RJ, Earley K, Pontes O et al (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lim MH, Kim JA et al (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cell 26:595–605

    CAS  Google Scholar 

  • Lee HS, Wang J, Tian L et al (2004) Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnol J 2:45–57

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Quijada PA, Udall J et al (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linnean Soc 82:665–674

    Article  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Lee DK, Vu TH et al (2004a) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Tej SS, Vu TH et al (2004b) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Vu TH, Tej SS et al (2004c) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  Google Scholar 

  • Mummenhoff K, Polster A, Mühlhausen A, Theißen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exp Bot 60:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed  Google Scholar 

  • Ni Z, Kim ED, Ha M et al (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    Article  CAS  PubMed  Google Scholar 

  • Obermeier C, Hosseini B, Friedt W, Snowdon R (2009) Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. BMC Genomics 10:29

    Article  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  PubMed  Google Scholar 

  • Pauwels M, Roosens N, Frérot H, Saumitou-Laprade P (2008) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Plant Biol 11:129–134

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Mahmoudian M, Freeman JL et al (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260

    Article  CAS  PubMed  Google Scholar 

  • Preuss SB, Costa-Nunes P, Tucker S et al (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673–684

    Article  CAS  PubMed  Google Scholar 

  • Rana D, van den Boogaart T, O’Neill CM et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  PubMed  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609

    Article  CAS  PubMed  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–765

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Cram DJ, Lewis CT, Parkin IA (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol 136:3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Sparks AB, Rago C et al (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    Article  CAS  PubMed  Google Scholar 

  • Santuari L, Pradervand S, Amiguet-Vercher AM et al (2010) Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of short reads and tiling arrays. Genome Biol 11:R4

    Article  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Kantama L, de Jong H, Mitchell-Olds T (2006a) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438

    Article  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006b) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Voigt ML, Corral JM et al (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Cram D, Huebert T et al (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171–184

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AG, Parkin IA, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    CAS  PubMed  Google Scholar 

  • Slotte T, Holm K, McIntyre LM et al (2007) Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145:160–173

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveals gene loss, fragmentation and dispersal following polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Trick M, Cheung F, Drou N et al (2009a) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50

    Article  PubMed  Google Scholar 

  • Trick M, Kwon S-J, Choi SR et al (2009b) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539

    Article  PubMed  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009c) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  PubMed  Google Scholar 

  • Turner TL, Bourne EC, Von Wettberg EJ et al (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42:260–263

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Farrona S, Vincent C et al (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423–427

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian L, Lee HS et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Harada E, Vess C et al (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  • Weber AP, Weber KL, Carr K et al (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  Google Scholar 

  • Whittle CA, Krochko JE (2009) Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. Plant Cell 21:2203–2219

    Article  CAS  PubMed  Google Scholar 

  • Wong CE, Li Y, Labbe A et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Wong CE, Li Y, Whitty BR et al (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574

    Article  CAS  PubMed  Google Scholar 

  • Wu GZ, Shi QM, Niu Y et al (2008) Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res 36(Database issue):D1044–D1047

    CAS  PubMed  Google Scholar 

  • Xiang D, Datla R, Li F et al (2008) Development of a Brassica seed cDNA microarray. Genome 51:236–242

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLC region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, R., Bancroft, I. (2011). Perspectives on Genetics and Genomics of the Brassicaceae. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_23

Download citation

Publish with us

Policies and ethics