Skip to main content

Computer Simulation on Disease Vector Population Replacement Driven by the Maternal Effect Dominant Embryonic Arrest

  • Chapter
  • First Online:
Software Tools and Algorithms for Biological Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

In this chapter, we present a series of computer simulations on the genetic modification of disease vectors. We compared the effectiveness of two techniques of genetic modification, transposable elements and maternal effect dominant embryonic arrest (MEDEA). A gene drive mechanism based on MEDEA is introduced in the population to confer immunity to individuals. Experimental results suggested that the genetic maternal effects could be necessary for the effectiveness of a disease control strategy based on the genetic modification of vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy S (2006) Mosquito Modifications: New Approach to Controlling Malaria. BioScience 57:816–821

    Article  Google Scholar 

  2. Zhong D (2006) Dynamics of Gene Introgression in the Malaria Vector Anopheles gambiae. Genetics 172:1–27

    Google Scholar 

  3. Wang R (2004) Microsatellite markers and Genotyping Procedures for Anopheles gambiae. Parasitology Today 15:33–37.

    Article  Google Scholar 

  4. Deceliere G (2005) The Dynamics of Transposable Elements in Structured Populations. Genetic Society of America 169:467–474

    CAS  Google Scholar 

  5. Kidwell M (1997) Transposable Elements as Source of Variation in Animals and Plants. The National Academy of Sciences 94:7704–7711

    Article  CAS  Google Scholar 

  6. Deceliere G (2006) TEDS: a Transposable Element Dynamics Simulation Environment. Bioinformatics 22:2702–2703

    Article  PubMed  CAS  Google Scholar 

  7. Vernick K, Collins F, Gwadz R (1989). A General System of Resistance to Malaria Infection in Anopheles gambiae Controlled by Two Main Genetic Loci. The American Journal of Tropical Medicine and Hygiene 40:585–592

    PubMed  CAS  Google Scholar 

  8. Le Rouzic A (2005) Models of the Population Genetics of Transposable Elements. Genetic Research 85:171–181

    Article  Google Scholar 

  9. Clough J (1996) Computer Simulation of Transposable Elements: Random Template and Strict Master Model. Molecular Evolution 42:52–58

    Article  CAS  Google Scholar 

  10. Manoukis N (2004) Detecting Recurrent Extinction in Metapopulations of Anopheles gambiae: Preliminary Results Using Simulation. WSES Transaction on Systems:1–26

    Google Scholar 

  11. Langton C (1997) Artificial Life. MIT Press, USA

    Google Scholar 

  12. Wilson W (1997) Simulating Ecological and Evolutionary Systems. Cambridge University Press, UK

    Google Scholar 

  13. Guevara M, Vallejo E (2008) A Computer Simulation Model of Gene Replacement in Vector Population. IEEE BIBE 2008:1–6

    Google Scholar 

  14. Smith N (1998) The Dynamics of Maternal Effect Selfish Genetic Elements. Journal of Theoretical Biology 191:173–180

    Article  PubMed  CAS  Google Scholar 

  15. Chen C, Huang H, Ward C, Su J (2007) A Synthetic Maternal-Effect Self Genetic Element Drives Population Replacement in Drosophila. Science 316:597–600

    Article  PubMed  CAS  Google Scholar 

  16. Kambris Z (2003) DmMyD88 controls dorsoventral patterning of the Drosophila embryo. EMBO reports 4:64–69

    Article  PubMed  CAS  Google Scholar 

  17. Wade M, Beeman R (1994) The Population Dynamics of Maternal Effect Selfish Genes. Genetics 138:1309–1314

    PubMed  CAS  Google Scholar 

  18. Hartl D (1997) Principles of Population Genetics. Sinauer, USA

    Google Scholar 

  19. Marshal J, Morikawa K, Manoukis N, Taylor C (2007) Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling. Journal of Visualized Experiments (5):227

    Google Scholar 

  20. Krane D, Raymer M (1997) Fundamental Concepts of Bioinformatics. Pearson, USA

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Consejo Nacional de Ciencia y Tecnología (CONACYT) Award number SEP-204-C01-47434. We want to thank Charles E. Taylor, Bruce Hay, and Catherine Ward for the feedback and ideas provided for the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Guevara-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guevara-Souza, M., Vallejo, E.E. (2011). Computer Simulation on Disease Vector Population Replacement Driven by the Maternal Effect Dominant Embryonic Arrest. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_34

Download citation

Publish with us

Policies and ethics