Skip to main content

Performance of Univariate Forecasting on Seasonal Diseases: The Case of Tuberculosis

  • Chapter
  • First Online:
Software Tools and Algorithms for Biological Systems

Abstract

The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter’s, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, D., Chen, H., Tseng, C., Larson, C., Eidson, M., Gotham, I., Lynch, C., and Ascher, M., ‘Sharing and visualizing infectious disease datasets using the WNV-BOT portal system’, in Proceedings of the 2004 Annual National Conference on Digital Government Research, Seattle, 2004, pp. 1–2.

    Google Scholar 

  2. Deal, B., Farello, C., Lancaster, M., Kompare, T., and Hannon, B., ‘A dynamic model of the spatial spread of an infectious disease: the case Of Fox Rabies in Illinois’, Environmental Modeling and Assessment, vol. 5, pp. 47–62, 2000.

    Article  Google Scholar 

  3. Jinping, L., Qianlu, R., Xi, C., and Jianqin, Y., ‘Study on transmission model of avian influenza’, in Proceedings of the International Conference on Information Acquisition 2004, China, 2004, pp. 54–58.

    Google Scholar 

  4. Pfeiffer, D. U. and Hugh-Jones, M., ‘Geographical information system as a tool in epidemiological assessment and wildlife disease management’, Revue Scientifique et Technique de l’Office International des Epizooties, vol. 21, pp. 91–102, 2002.

    CAS  Google Scholar 

  5. Garner, M. G., Hess, G. D., and Yang, X., ‘An integrated modelling approach to assess the risk of wind-borne spread of foot-and-mouth disease virus from infected premises’, Environmental Modelling and Assessment, vol. 11, pp. 195–207, 2005.

    Google Scholar 

  6. Hailu, A., Mudawi Musa, A., Royce, C., and Wasunna, M., ‘Visceral leishmaniasis: new health tools are needed’, PLoS Medicine, vol. 2, pp. 590–594, 2005.

    Google Scholar 

  7. Taylor, N., ‘Review of the use of models in informing disease control policy development and adjustment’, DEFRA, U.K. 26 May 2003.

    Google Scholar 

  8. Lees, V. W., ‘Learning from outbreaks of bovine tuberculosis near Riding Mountain National Park: applications to a foreign animal disease outbreak’, The Canadian Veterinary Journal, vol. 45, pp. 28–34, 2004.

    Google Scholar 

  9. Stott, A. (2006). Optimisation methods for assisting policy decisions on Endemic diseases [online]. Available at: http://www.sac.ac.uk/mainrep/pdfs/leewp_15_endemic_disease.pdf.

  10. Debanne, S. M., Bielefeld, R. A., Cauthen, G. M., Daniel, T. M., and Rowland, D. Y., ‘Multivariate Markovian modeling of tuberculosis: Forecast for the United States’, Emerging Infectious Diseases, vol. 6, pp. 148–157, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Medina, D. C., Findley, S. E., and Doumbia, S., ‘State–space forecasting of Schistosoma haematobium time-series in Niono, Mali’, PLoS Neglected Tropical Diseases, vol. 2, pp. 1–12, 2008.

    Article  Google Scholar 

  12. Lai, D., ‘Monitoring the SARS epidemic in China: a time series analysis’, Journal of Data Science, vol. 3, pp. 279–293, 2005.

    Google Scholar 

  13. Sebastiani, P., Mandl, K. D., Szolovits, P., Kohane, I. S., and Ramoni, M. F., ‘A Bayesian dynamic model for influenza surveillance’, Statistics in Medicine, vol. 25, pp. 1803–1825, 2006.

    Article  PubMed  Google Scholar 

  14. Chaves, L. F. and Pascual, M., ‘Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease’, PLoS Medicine, vol. 3 (8), pp. 1320–1328, 2006.

    Article  Google Scholar 

  15. Permanasari, A. E., Awang Rambli, D. R., and Dominic, P. D. D., ‘Forecasting of zoonosis incidence in human using decomposition method of seasonal time series’, in Proceedings of the NPC 2009, Tronoh, Malaysia, 2009, pp. 1–7.

    Google Scholar 

  16. Bowerman, B. L. and O’Connell, R. T., Forecasting and Time Series An Applied Approach, 3rd ed: Pacific Grove, CA: Duxbury Thomson Learning, 1993.

    Google Scholar 

  17. Chen, Z. and Yang, Y. (2004). Assessing forecast accuracy measures [Online]. Available at: http://www.stat.iastate.edu/preprint/articles/2004--10.pdf.

  18. Permanasari, A. E., Awang Rambli, D. R., and Dominic, P. D. D., ‘Prediction of zoonosis incidence in human using Seasonal Auto Regressive Integrated Moving Average (SARIMA)’, International Journal of Computer Science and Information Security (IJCSIS), vol. 5, pp. 103–110, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhistya Erna Permanasari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Permanasari, A.E., Rambli, D.R.A., Dominic, P.D.D. (2011). Performance of Univariate Forecasting on Seasonal Diseases: The Case of Tuberculosis. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_17

Download citation

Publish with us

Policies and ethics