Skip to main content

Formic Acid Oxidation

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Electrocatalysis of formic acid (FA) oxidation reactions has been intensively studied for two main reasons: (1) FA is an attractive chemical fuel for fuel cell applications due to its high energy density (1,740 Wh/kg, 2,086 Wh/L) and easy storage [1], and (2) FA is the smallest molecule that has four most common chemical bonds in organic compounds (C−H, C=O, C−O, O−H), making FA an ideal model molecule for studying electrooxidation reactions.

Three possible reaction pathways of FA oxidation have been proposed [2–4]:

  1. (i)

    \( \mathrm{ HCOOH}^*\ \to\ \mathrm{ C}\mathrm{ OOH}^* +\ {{\mathrm{ H}}^{+}}+{e^{-}}\ \to\ \mathrm{ C}{{\mathrm{ O}}_2} +\ 2{{\mathrm{ H}}^{+}} + 2{e^{-}} \)

  2. (ii)

    \( \mathrm{ HCOOH}^*\ \to\ \mathrm{ HCOO}^* + {{\mathrm{ H}}^{+}}+{e^{-}}\ \to\ \mathrm{ C}{{\mathrm{ O}}_2} +\ 2{{\mathrm{ H}}^{+}} + 2{e^{-}} \)

  3. (iii)

    \( \mathrm{ HCOOH}^*\ \to\ \mathrm{ C}\mathrm{ O}^* +\ {{\mathrm{ H}}_2}\mathrm{ O}\ \to\ \mathrm{ C}{{\mathrm{ O}}_2} + 2{{\mathrm{ H}}^{+}} +\...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rice C et al (2002) Direct formic acid fuel cells. J Power Sources 111:83–89

    Article  CAS  Google Scholar 

  2. Capon A, Parsons R (1973) Oxidation of formic-acid at noble-metal electrodes part. 3. Intermediates and mechanism on platinum-electrodes. J Electroanal Chem 45:205–231

    Article  CAS  Google Scholar 

  3. Samjeske G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566

    Article  CAS  Google Scholar 

  4. Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378

    Article  CAS  Google Scholar 

  5. Clavilier J, Parsons R, Durand R, Lamy C, Leger JM (1981) Formic-acid oxidation on single-crystal platinum-electrodes – comparison with polycrystalline platinum. J Electroanal Chem 124:321–326

    Article  CAS  Google Scholar 

  6. Adzic RR, Tripkovic AV, Ogrady WE (1982) Structural effects in electrocatalysis. Nature 296:137–138

    Article  CAS  Google Scholar 

  7. Sun SG, Clavilier J, Bewick A (1988) The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulfuric acid solution – an EMIRS study. J Electroanal Chem 240:147–159

    Article  CAS  Google Scholar 

  8. Solla-Gullon J et al (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10:3689–3698

    Article  CAS  Google Scholar 

  9. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  10. Casado-Rivera E et al (2004) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049

    Article  CAS  Google Scholar 

  11. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  CAS  Google Scholar 

  12. Ji XL et al (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2:286–293

    Article  CAS  Google Scholar 

  13. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  14. Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  15. Lim B et al (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  16. Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  17. Wang C et al (2011) Multimetallic Au/FePt(3) nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  18. Mazumder V, Lee Y, Sun SH (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1231

    Article  CAS  Google Scholar 

  19. Wang HF, Liu ZP (2009) Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C 113:17502–17508

    Article  CAS  Google Scholar 

  20. Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235

    Article  CAS  Google Scholar 

  21. Lee HJ, Habas SE, Somorjai GA, Yang PD (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407

    Article  CAS  Google Scholar 

  22. Stamenkovic V et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  23. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  24. Bauer JC, Chen X, Liu QS, Phan TH, Schaak RE (2008) Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J Mater Chem 18:275–282

    Article  CAS  Google Scholar 

  25. Adzic RR, Simic DN, Despic AR, Drazic DM (1975) Electrocatalysis by foreign metal monolayers – oxidation of formic-acid on platinum. J Electroanal Chem 65:587–601

    Article  CAS  Google Scholar 

  26. Adzic RR, Tripkovic AV, Markovic NM (1983) Structural effects in electrocatalysis – oxidation of formic-acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J Electroanal Chem 150:79–88

    Article  CAS  Google Scholar 

  27. Xia XH, Iwasita T (1993) Influence of underpotential deposited lead upon the oxidation of HCOOH in HClO4 at platinum-electrodes. J Electrochem Soc 140:2559–2565

    Article  CAS  Google Scholar 

  28. Kang YJ, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J Am Chem Soc 132:7568–7569

    Article  CAS  Google Scholar 

  29. Markovic NM et al (1995) Electrooxidation mechanisms of methanol and formic-acid on Pt-Ru alloys surfaces. Electrochim Acta 40:91–98

    Article  CAS  Google Scholar 

  30. Kang YJ et al (2012) Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation. ACS Nano 6(3):2818–2825

    Article  CAS  Google Scholar 

  31. Maksimuk S, Yang SC, Peng ZM, Yang H (2007) Synthesis and characterization of ordered intermetallic PtPb nanorods. J Am Chem Soc 129:8684–8685

    Article  CAS  Google Scholar 

  32. Alden LR, Han DK, Matsumoto F, Abruna HD, DiSalvo FJ (2006) Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid. Chem Mater 18:5591–5596

    Article  CAS  Google Scholar 

  33. Wang LL, Johnson DD (2008) Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT: CO and H adsorption. J Phys Chem C 112:8266–8275

    Article  CAS  Google Scholar 

  34. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  Google Scholar 

  35. Sasaki K et al (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607

    Article  CAS  Google Scholar 

  36. Mazumder V, Sun SH (2009) Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc 131:4588–4589

    Article  CAS  Google Scholar 

  37. Naohara H, Ye S, Uosaki K (2001) Thickness dependent electrochemical reactivity of epitaxially electrodeposited palladium thin layers on Au(111) and Au(100) surfaces. J Electroanal Chem 500:435–445

    Article  CAS  Google Scholar 

  38. Liang Y et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kang, Y., Murray, C.B. (2014). Formic Acid Oxidation. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_402

Download citation

Publish with us

Policies and ethics