Skip to main content

Electrocatalysis of Chlorine Evolution

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Electrochemical Production of Chlorine

The production of chlorine by electrochemical oxidation of chlorides (chlor–alkali technology, CAT) is nowadays one of the largest processes in industrial electrochemistry. The process, which spends two moles of electricity (2 F), is based on the following stoichiometric equation:

$$ \begin{array}{ll} 2\mathrm{ NaCl} + 2{{\mathrm{ H}}_2}\mathrm{ O} + 2F\ \\ \quad \to\ \mathrm{ C}{{\mathrm{ l}}_2} + 2\mathrm{ NaOH} + {{\mathrm{ H}}_2} \end{array} $$
(1)

The main products – chlorine and the corresponding hydroxide – are, besides sulfuric acid and ammonia, the most important industrial inorganic chemicals. The third product – hydrogen (as a by-product) – is very valuable from the standpoints of contemporary power sources (“hydrogen economy;” fuel cells) and different industrial synthesis (mostly organic).

Historical Overview

Although the possibility of electrolytic decomposition of sodium chloride was indicated by W. Cruikshank back in 1800, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coulter MO (ed) (1980) Modern chlor–alkali technology. Ellis Horwood, Chichester

    Google Scholar 

  2. Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45:2377–2385. doi:10.1016/S0013-4686(00)00338-8

    CAS  Google Scholar 

  3. Trasatti S, O’Grady WE (1982) Properties and applications of RuO2-based electrodes. In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 12. Wiley, New York

    Google Scholar 

  4. Trasatti S (1999) Interfacial electrochemistry of conductive oxides for electrocatalysis. In: Wieckowski A (ed) Interfacial electrochemistry – theory, experiment and applications. Marcel Dekker, New York

    Google Scholar 

  5. Cardarelli F (2008) Materials handbook: a concise desktop reference, 2nd edn. Springer, London

    Google Scholar 

  6. Krishtalik LI (1981) Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes. Electrochim Acta 26:329–337. doi:10.1016/0013-4686(81)85019-0

    CAS  Google Scholar 

  7. Krishtalik LI (1983) Kinetics of electrochemical reactions at metal–solution interfaces. In: Conway B, Bockris J, Yeager E, Khan S, White R (eds) Kinetics and mechanisms of electrode processes, vol 7, Comprehensive treatise of electrochemistry. Plenum Press, New York

    Google Scholar 

  8. Fernández JL, de Chialvo MRG, Chialvo AC (2002) Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance. Electrochim Acta 47:1129–1152. doi:10.1016/S0013-4686(01)00837-4; 10.1016/S0013-4686(01)00838-6; 10.1016/S0013-4686(01)00839-8

    Google Scholar 

  9. Panić V, Dekanski A, Mišković-Stanković VB, Nikolić B, Milonjić S (2005) The role of sol–gel procedure conditions in electrochemical behavior and corrosion stability of Ti/[RuO2–TiO2] anodes. Mater Manuf Process 20:89–103. doi:10.1081/AMP-200041645

    Google Scholar 

  10. Panić VV, Nikolić BŽ (2008) Electrocatalytic properties and stability of titanium anodes activated by the inorganic sol–gel procedure. J Serb Chem Soc 73:1083–1112. doi:10.2298/JSC0811083P

    Google Scholar 

  11. Beck F (1992) Wear mechanisms of anodes. Electrochim Acta 34:811–822. doi:10.1016/0013-4686(89)87114-2

    Google Scholar 

  12. Gajić-Krstajić LM, Trišović TL, Krstajić NV (2004) Spectrophotometric study of the anodic corrosion of Ti/RuO2 electrode in acid sulfate solution. Corros Sci 46:65–74. doi:10.1016/S0010-938X(03)00111-2

    Google Scholar 

  13. Jovanović VM, Dekanski A, Despotov P, Nikolić BŽ, Atanasoski RT (1992) The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings. J Electroanal Chem 339:147–165. doi:10.1016/0022-0728(92)80449-E

    Google Scholar 

  14. Panić V, Dekanski A, Mišković-Stanković VB, Milonjić S, Nikolić B (2005) On the deactivation mechanism of RuO2–TiO2/Ti anodes prepared by the sol–gel procedure. J Electroanal Chem 579:67–76. doi:10.1016/j.jelechem.2005.01.026

    Google Scholar 

  15. Pilla AS, Cobo EO, Duarte MME, Salinas DR (1997) Evaluation of anode deactivation in chlor–alkali cells. J Appl Electrochem 27:1283–1289. doi:10.1023/A:1018444206334

    CAS  Google Scholar 

  16. Terezo AJ, Pereira EC (2002) Preparation and characterisation of Ti/RuO2 anodes obtained by sol–gel and conventional routes. Mater Lett 53:339–345. doi:10.1016/S0167-577X(01)00504-3

    CAS  Google Scholar 

  17. Panić V, Dekanski A, Milonjić SK, Atanasoski R, Nikolić B (2000) The influence of the aging time of RuO2 sol on the electrochemical properties of the activated titanium anodes obtained by sol–gel procedure. In: Uskoković DP, Battiston GA, Nedeljković JM, Milonjić SK, Raković DI (eds) Trends in advanced materials and processes, vol 352, Materials science forum. Trans Tech, Zurich

    Google Scholar 

  18. Panić VV, Dekanski A, Milonjić SK, Atanasoski RT, Nikolić BŽ (1999) RuO2–TiO2 coated titanium anodes obtained by the sol–gel procedure and their electrochemical behaviour in the chlorine evolution reaction. Colloids Surf A 157:269–274. doi:10.1016/S0927-7757(99)00094-1

    Google Scholar 

  19. Panić V, Dekanski A, Milonjić S, Atanasoski R, Nikolić B (2000) The influence of the aging time of RuO2 and TiO2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol–gel procedure. Electrochim Acta 46:415–421. doi:10.1016/S0013-4686(00)00600-9

    Google Scholar 

  20. Fathollahi F, Javanbakht M, Norouzi P, Ganjali MR (2011) Comparison of morphology, stability and electrocatalytic properties of Ru0.3Ti0.7O2 and Ru0.3Ti0.4Ir0.3O2 coated titanium anodes. Russ J Electrochem 47:1281–1286. doi:10.1134/S1023193511110061

    CAS  Google Scholar 

  21. Forti JC, Olivi P, de Andrade AR (2001) Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)Sn x O2 prepared via a polymeric precursor. Electrochim Acta 47:913–920. doi:10.1016/S0013-4686(01)00791-5

    CAS  Google Scholar 

  22. Panić VV, Nikolić BŽ (2007) Sol–gel prepared active ternary oxide coating on titanium in cathodic protection. J Serb Chem Soc 72:1393–1402. doi:10.2298/JSC0712393P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav Ž. Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Nikolić, B.Ž., Panić, V. (2014). Electrocatalysis of Chlorine Evolution. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_397

Download citation

Publish with us

Policies and ethics