Skip to main content

Pathways and Crossroads to Colorectal Cancer

  • Chapter
  • First Online:
Pre-Invasive Disease: Pathogenesis and Clinical Management

Abstract

Colorectal tumorigenesis is one of the best known processes of cellular transformation in humans. Its characterization has moved ahead by leaps and bounds during the last three decades thanks to major advances in the fields of endoscopy, histology and molecular pathology. And as often happens when a human disease is subjected to in-depth investigation, what originally appeared to be a single entity turns out to include several distinct clinical, histologic, and molecular phenotypes. Among other things, tumor phenotypes can tell us a great deal about the route taken by the tumor cells on their journey toward malignancy. Not surprisingly, some tumors develop along pathways that are “heavily ­ trafficked” (and for this reason, relatively well known); others follow the “roads less traveled.” But if obstacles arise along the way, tumor cells are adept at exploiting alternative routes that permit them to continue their journey toward cancer, and these deviations can give rise to mixed phenotypes. These phenotypes are nonetheless consistent with the concept of carcinogenesis as a nonrandom – and therefore, predictable – process. Each pathway, each crossroads is the result of a specific set of genetic or epigenetic alterations. Many are already well defined, others are only partially characterized, and some are still in the realm of hypothesis. Thus far, we have fairly reliable maps of at least two of the major pathways to colorectal cancer, but with increasingly sophisticated molecular analysis of preinvasive lesions, there is little doubt that we will eventually identify variants of these pathways and uncover others whose existence was not even suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACFs:

aberrant crypt foci

APC:

adenomatous polyposis coli

CIN:

chromosomal instability

CIMP:

CpG island methylator phenotype

MMR:

DNA mismatch repair

FAP:

familial adenomatous polyposis

GCSPs:

goblet-cell serrated polyps

HP:

hyperplastic polyposis

IBD:

inflammatory bowel disease

MSI:

microsatellite instability

MVSPs:

microvesicular serrated polyps

SAs:

serrated adenomas

SSAs:

sessile serrated adenomas

References

  1. Winawer SJ, Zauber AG, Fletcher RH et al (2006) Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer and the American Cancer Society. Gastroenterology 130:1872–1885

    PubMed  Google Scholar 

  2. Levine JS, Ahnen DJ (2006) Clinical practice. Adenomatous polyps of the colon. N Engl J Med 355:2551–2557

    PubMed  CAS  Google Scholar 

  3. Gupta S (2008) Colorectal polyps: the scope and management of the problem. Am J Med Sci 336:407–417

    PubMed  Google Scholar 

  4. Young GP, Cole SR (2009) Which fecal occult blood test is best to screen for colorectal cancer? Nat Clin Pract Gastroenterol Hepatol 6(3):140–141

    PubMed  Google Scholar 

  5. Psaty BM, Potter JD (2006) Risks and benefits of celecoxib to prevent recurrent adenomas. N Engl J Med 355:950–952

    PubMed  CAS  Google Scholar 

  6. Schoenfeld P, Cash B, Flood A et al (2005) Colonoscopic screening of average-risk women for colorectal neoplasia. N Engl J Med 352:2061–2068

    PubMed  CAS  Google Scholar 

  7. Neklason DW, Thorpe BL, Ferrandez A et al (2008) Colonic adenoma risk in familial colorectal cancer – a study of six extended kindreds. Am J Gastroenterol 103:2577–2584

    PubMed  Google Scholar 

  8. Hendriks YM, de Jong AE, Morreau H et al (2006) Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin 56:213–225

    PubMed  Google Scholar 

  9. Vasen HF, Moslein G, Alonso A et al (2008) Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut 57:704–713

    PubMed  CAS  Google Scholar 

  10. Ahmadi A, Polyak S, Draganov PV (2009) Colorectal cancer surveillance in inflammatory bowel disease: the search continues. World J Gastroenterol 15:61–66

    PubMed  Google Scholar 

  11. Roncucci L, Stamp D, Medline A, Cullen JB, Bruce WR (1991) Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum Pathol 22:287–294

    PubMed  CAS  Google Scholar 

  12. Hurlstone DP, Karajeh M, Sanders DS, Drew SK, Cross SS (2005) Rectal aberrant crypt foci identified using high-magnification-chromoscopic colonoscopy: biomarkers for flat and depressed neoplasia. Am J Gastroenterol 100:1283–1289

    PubMed  Google Scholar 

  13. Takayama T, Katsuki S, Takahashi Y et al (1998) Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 339:1277–1284

    PubMed  CAS  Google Scholar 

  14. Takayama T, Ohi M, Hayashi T et al (2001) Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 121:599–611

    PubMed  CAS  Google Scholar 

  15. Kukitsu T, Takayama T, Miyanishi K et al (2008) Aberrant crypt foci as precursors of the dysplasia-carcinoma sequence in patients with ulcerative colitis. Clin Cancer Res 14:48–54

    PubMed  CAS  Google Scholar 

  16. Schoen RE, Mutch M, Rall C et al (2008) The natural history of aberrant crypt foci. Gastrointest Endosc 67:1097–1102

    PubMed  Google Scholar 

  17. Winawer SJ (2007) The multidisciplinary management of gastrointestinal cancer. Colorectal cancer screening. Best Pract Res Clin Gastroenterol 21:1031–1048

    PubMed  Google Scholar 

  18. Muto T, Kamiya J, Sawada T et al (1985) Small “flat adenoma” of the large bowel with special reference to its clinicopathologic features. Dis Colon Rectum 28:847–851

    PubMed  CAS  Google Scholar 

  19. Kudo S, Lambert R, Allen JI et al (2008) Nonpolypoid neoplastic lesions of the colorectal mucosa. Gastrointest Endosc 68:S3–47

    PubMed  Google Scholar 

  20. Endoscopic Classification Review Group (2005) Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy 37:570–578

    Google Scholar 

  21. O’Brien MJ, Winawer SJ, Zauber AG et al (2004) Flat adenomas in the National Polyp Study: is there increased risk for high-grade dysplasia initially or during surveillance? Clin Gastroenterol Hepatol 2:905–911

    PubMed  Google Scholar 

  22. Hurlstone DP, Cross SS, Adam I et al (2003) A prospective clinicopathological and endoscopic evaluation of flat and depressed colorectal lesions in the United Kingdom. Am J Gastroenterol 98:2543–2549

    PubMed  Google Scholar 

  23. Kudo S, Rubio CA, Teixeira CR, Kashida H, Kogure E (2001) Pit pattern in colorectal neoplasia: endoscopic magnifying view. Endoscopy 33:367–373

    PubMed  CAS  Google Scholar 

  24. Snover DC, Jass JR, Fenoglio-Preiser C, Batts KP (2005) Serrated polyps of the large intestine: a morphologic and molecular review of an evolving concept. Am J Clin Pathol 124:380–391

    PubMed  Google Scholar 

  25. O’Brien MJ (2007) Hyperplastic and serrated polyps of the colorectum. Gastroenterol Clin North Am 36:947–968, viii

    PubMed  Google Scholar 

  26. Jass JR, Baker K, Zlobec I et al (2006) Advanced colorectal polyps with the molecular and morphological features of serrated polyps and adenomas: concept of a ‘fusion’ pathway to colorectal cancer. Histopathology 49:121–131

    PubMed  CAS  Google Scholar 

  27. Carr NJ, Mahajan H, Tan KL, Hawkins NJ, Ward RL (2009) Serrated and non-serrated polyps of the colorectum: their prevalence in an unselected case series and correlation of BRAF mutation analysis with the diagnosis of sessile serrated adenoma. J Clin Pathol 62(6):516–518

    PubMed  CAS  Google Scholar 

  28. Spring KJ, Zhao ZZ, Karamatic R et al (2006) High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 131:1400–1407

    PubMed  CAS  Google Scholar 

  29. Rosenberg DW, Yang S, Pleau DC et al (2007) Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res 67:3551–3554

    PubMed  CAS  Google Scholar 

  30. Makinen MJ (2007) Colorectal serrated adenocarcinoma. Histopathology 50:131–150

    PubMed  CAS  Google Scholar 

  31. O’Brien MJ, Yang S, Mack C et al (2006) Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30:1491–1501

    PubMed  Google Scholar 

  32. Oka S, Tanaka S, Hiyama T et al (2004) Clinicopathologic and endoscopic features of colorectal serrated adenoma: differences between polypoid and superficial types. Gastrointest Endosc 59:213–219

    PubMed  Google Scholar 

  33. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    PubMed  CAS  Google Scholar 

  34. Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    PubMed  CAS  Google Scholar 

  35. Groden J, Thliveris A, Samowitz W et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600

    PubMed  CAS  Google Scholar 

  36. Su LK, Kinzler KW, Vogelstein B et al (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670

    PubMed  CAS  Google Scholar 

  37. Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21:1935–1940

    PubMed  CAS  Google Scholar 

  38. Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    PubMed  CAS  Google Scholar 

  39. Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    PubMed  CAS  Google Scholar 

  40. Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF (1997) Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94: 10330–10334

    PubMed  CAS  Google Scholar 

  41. Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    PubMed  CAS  Google Scholar 

  42. Samowitz WS, Powers MD, Spirio LN et al (1999) Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 59:1442–1444

    PubMed  CAS  Google Scholar 

  43. Suzuki H, Watkins DN, Jair KW et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

    PubMed  CAS  Google Scholar 

  44. Schneikert J, Grohmann A, Behrens J (2007) Truncated APC regulates the transcriptional activity of beta-catenin in a cell cycle dependent manner. Hum Mol Genet 16:199–209

    PubMed  CAS  Google Scholar 

  45. Segditsas S, Rowan AJ, Howarth K et al (2009) APC and the three-hit hypothesis. Oncogene 28:146–155

    PubMed  CAS  Google Scholar 

  46. Alberici P, Fodde R (2006) The role of the APC tumor suppressor in chromosomal instability. Genome Dyn 1:149–170

    PubMed  CAS  Google Scholar 

  47. Cardoso J, Molenaar L, de Menezes RX et al (2006) Chromosomal instability in MYH- and APC-mutant adenomatous polyps. Cancer Res 66:2514–2519

    PubMed  CAS  Google Scholar 

  48. Luo L, Li B, Pretlow TP (2003) DNA alterations in human aberrant crypt foci and colon cancers by random primed polymerase chain reaction. Cancer Res 63:6166–6169

    PubMed  CAS  Google Scholar 

  49. Sieber OM, Heinimann K, Gorman P et al (2002) Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc Natl Acad Sci U S A 99:16910–16915

    PubMed  CAS  Google Scholar 

  50. Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    PubMed  CAS  Google Scholar 

  51. Raynaud CM, Jang SJ, Nuciforo P et al (2008) Telomere shortening is correlated with the DNA damage response and telomeric protein down-regulation in colorectal preneoplastic lesions. Ann Oncol 19:1875–1881

    PubMed  CAS  Google Scholar 

  52. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    PubMed  CAS  Google Scholar 

  53. Grant S (2008) Cotargeting survival signaling pathways in cancer. J Clin Invest 118:3003–3006

    PubMed  CAS  Google Scholar 

  54. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    PubMed  CAS  Google Scholar 

  55. Sweeney C, Boucher KM, Samowitz WS et al (2009) Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosomes Cancer 48:1–9

    PubMed  CAS  Google Scholar 

  56. Shen L, Toyota M, Kondo Y et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 104:18654–18659

    PubMed  CAS  Google Scholar 

  57. Samowitz WS, Slattery ML, Sweeney C et al (2007) APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res 5:165–170

    PubMed  CAS  Google Scholar 

  58. Goel A, Arnold CN, Niedzwiecki D et al (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63:1608–1614

    PubMed  CAS  Google Scholar 

  59. Toyota M, Ahuja N, Ohe-Toyota M et al (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    PubMed  CAS  Google Scholar 

  60. O’Brien MJ, Yang S, Clebanoff JL et al (2004) Hyperplastic (serrated) polyps of the colorectum: relationship of CpG island methylator phenotype and K-ras mutation to location and histologic subtype. Am J Surg Pathol 28:423–434

    PubMed  Google Scholar 

  61. Chan TL, Zhao W, Leung SY, Yuen ST (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881

    PubMed  CAS  Google Scholar 

  62. Nosho K, Irahara N, Shima K et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS ONE 3:e3698

    PubMed  Google Scholar 

  63. Kambara T, Simms LA, Whitehall VL et al (2004) BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53:1137–1144

    PubMed  CAS  Google Scholar 

  64. Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    PubMed  CAS  Google Scholar 

  65. Goel A, Nagasaka T, Arnold CN et al (2007) The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132:127–138

    PubMed  CAS  Google Scholar 

  66. Menigatti M, Truninger K, Gebbers JO et al (2009) Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters. Oncogene 28:899–909

    PubMed  CAS  Google Scholar 

  67. Samowitz WS, Albertsen H, Sweeney C et al (2006) Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst 98:1731–1738

    PubMed  CAS  Google Scholar 

  68. Laiho P, Kokko A, Vanharanta S et al (2007) Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 26:312–320

    PubMed  CAS  Google Scholar 

  69. Lee SH, Kim J, Kim WH, Lee YM (2009) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28:184–194

    PubMed  CAS  Google Scholar 

  70. di Pietro M, Sabates Bellver J, Menigatti M et al (2005) Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers. Gastroenterology 129:1047–1059

    PubMed  Google Scholar 

  71. Sabates-Bellver J, Van der Flier LG, de Palo M et al (2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5:1263–1275

    PubMed  CAS  Google Scholar 

  72. Knudsen AL, Bisgaard ML, Bulow S (2003) Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2:43–55

    PubMed  Google Scholar 

  73. Schneikert J, Behrens J (2007) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56:417–425

    PubMed  CAS  Google Scholar 

  74. Sabates Bellver J, Cattaneo E, Heinimann K, Jiricny J, Marra G (2007) Getting familiar with familial colon cancer. In: Gasche C (ed) Intestinal inflammation and colorectal cancer (FALK Symposium 158). Springer, New York, pp 27–60

    Google Scholar 

  75. Al-Tassan N, Chmiel NH, Maynard J et al (2002) Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 30:227–232

    PubMed  CAS  Google Scholar 

  76. Sieber OM, Lipton L, Crabtree M et al (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348:791–799

    PubMed  Google Scholar 

  77. Marra G, Jiricny J (2003) Multiple colorectal adenomas – is their number up? N Engl J Med 348:845–847

    PubMed  Google Scholar 

  78. Marra G, Jiricny J (2005) DNA mismatch repair and colon cancer. In: Nigg E (ed) Genome instability in cancer development (advances in experimental medicine and biology). Springer, New York, pp 85–123

    Google Scholar 

  79. Truninger K, Menigatti M, Luz J et al (2005) Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 128:1160–1171

    PubMed  CAS  Google Scholar 

  80. de Jong AE, Morreau H, Van Puijenbroek M et al (2004) The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology 126:42–48

    PubMed  Google Scholar 

  81. Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  82. Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969

    PubMed  CAS  Google Scholar 

  83. Burt RW, Jass JR (2000) Hyperplastic polyposis. In: Hamilton SR, Aaltonen LA (eds) World Health Organization classification of tumors. Pathology and genetics. Tumors of the digestive system. Springer, Berlin, pp 135–136

    Google Scholar 

  84. Jass JR (2000) Familial colorectal cancer: pathology and molecular characteristics. Lancet Oncol 1:220–226

    PubMed  CAS  Google Scholar 

  85. Ferrandez A, Samowitz W, DiSario JA, Burt RW (2004) Phenotypic characteristics and risk of cancer development in hyperplastic polyposis: case series and literature review. Am J Gastroenterol 99:2012–2018

    PubMed  Google Scholar 

  86. Lage P, Cravo M, Sousa R et al (2004) Management of Portuguese patients with hyperplastic polyposis and screening of at-risk first-degree relatives: a contribution for future guidelines based on a clinical study. Am J Gastroenterol 99:1779–1784

    PubMed  CAS  Google Scholar 

  87. Torlakovic E, Snover DC (2006) Sessile serrated adenoma: a brief history and current status. Crit Rev Oncog 12:27–39

    PubMed  Google Scholar 

  88. Jass JR (2008) Colorectal polyposes: from phenotype to diagnosis. Pathol Res Pract 204:431–447

    PubMed  Google Scholar 

  89. Beach R, Chan AO, Wu TT et al (2005) BRAF mutations in aberrant crypt foci and hyperplastic polyposis. Am J Pathol 166:1069–1075

    PubMed  CAS  Google Scholar 

  90. Minoo P, Baker K, Goswami R et al (2006) Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut 55:1467–1474

    PubMed  CAS  Google Scholar 

  91. Young J, Jass JR (2006) The case for a genetic predisposition to serrated neoplasia in the colorectum: hypothesis and review of the literature. Cancer Epidemiol Biomarkers Prev 15:1778–1784

    PubMed  CAS  Google Scholar 

  92. Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466

    PubMed  CAS  Google Scholar 

  93. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    PubMed  CAS  Google Scholar 

  94. Budarf ML, Labbe C, David G, Rioux JD (2009) GWA studies: rewriting the story of IBD. Trends Genet 25(3):137–146

    PubMed  CAS  Google Scholar 

  95. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–535

    PubMed  CAS  Google Scholar 

  96. Canavan C, Abrams KR, Mayberry J (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther 23:1097–1104

    PubMed  CAS  Google Scholar 

  97. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287:G7–17

    PubMed  CAS  Google Scholar 

  98. Itzkowitz SH, Harpaz N (2004) Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology 126:1634–1648

    PubMed  Google Scholar 

  99. Kiesslich R, Goetz M, Lammersdorf K et al (2007) Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132:874–882

    PubMed  Google Scholar 

  100. Kornbluth A, Sachar DB (1997) Ulcerative colitis practice guidelines in adults. American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 92:204–211

    PubMed  CAS  Google Scholar 

  101. Lewis JD (2003) The many faces of low-grade dysplasia. Gastroenterology 125:1531–1533

    PubMed  Google Scholar 

  102. Yin J, Harpaz N, Tong Y et al (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology 104:1633–1639

    PubMed  CAS  Google Scholar 

  103. Brentnall TA, Crispin DA, Rabinovitch PS et al (1994) Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107:369–378

    PubMed  CAS  Google Scholar 

  104. Fujii S, Fujimori T, Chiba T (2003) Usefulness of analysis of p53 alteration and observation of surface microstructure for diagnosis of ulcerative colitis-associated colorectal neoplasia. J Exp Clin Cancer Res 22:107–115

    PubMed  CAS  Google Scholar 

  105. Konishi K, Shen L, Wang S et al (2007) Rare CpG island methylator phenotype in ulcerative colitis-associated neoplasias. Gastroenterology 132:1254–1260

    PubMed  CAS  Google Scholar 

  106. Risques RA, Rabinovitch PS, Brentnall TA (2006) Cancer surveillance in inflammatory bowel disease: new molecular approaches. Curr Opin Gastroenterol 22:382–390

    PubMed  CAS  Google Scholar 

  107. Risques RA, Lai LA, Brentnall TA et al (2008) Ulcerative colitis is a disease of accelerated colon aging: evidence from telomere attrition and DNA damage. Gastroenterology 135:410–418

    PubMed  CAS  Google Scholar 

  108. Willenbucher RF, Aust DE, Chang CG et al (1999) Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 154:1825–1830

    PubMed  CAS  Google Scholar 

  109. Baudis M, Cleary ML (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17:1228–1229

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

E.C. is supported by grants received by G.M. from the Swiss National Science Foundation. G.M. also gratefully acknowledges the generous financial support of the Zurich Cancer League. The authors wish to thank Luca Roncucci for photos illustrating the histologic features of ACFs, Jana Rojickova for editing the figures, and Marian Kent for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Marra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cattaneo, E., Baudis, M., Buffoli, F., Bianco, M.A., Zorzi, F., Marra, G. (2011). Pathways and Crossroads to Colorectal Cancer. In: Fitzgerald, R. (eds) Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6694-0_18

Download citation

Publish with us

Policies and ethics