Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

Transcription factor NF-κB regulates the physiological response to a variety of stimuli. The NF-κB pathway has served as a paradigm for analyzing the impact of the covalent protein modifier ubiquitin on signal transduction. The discovery in the early 1990s that degradation of cytosolic NF-κB inhibitors (IκBs) is mediated by the ubiquitin proteasome system (UPS) was the first example for a direct involvement of ubiquitination in cellular signaling. By now it has become clear that the role of the ubiquitin system in the NF-κB pathway extends far beyond triggering IκB destruction. The IκB kinase (IKK) complex is the key regulator of NF-κB. Attachment of ubiquitin chains to the IKK complex and to further upstream components drives NF-κB signaling pathways by promoting the clustering of the signaling network. Whereas ubiquitin conjugation serves a positive function in the NF-κB pathway, ubiquitin deconjugation acts as a negative regulatory feedback mechanism that is critically involved in balancing the strength and the duration of the NF-κB response. Moreover, inactivation of deconjugating enzymes can cause sustained NF-κB activity under pathological conditions like chronic inflammation or cancer. Here we review the impact of the ubiquitin system on the NF-κB signaling network by putting a focus on the enzymes that help to shape the plasticity of the NF-κB response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132:344–62.

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol 2008; 8:837–48.

    Article  CAS  PubMed  Google Scholar 

  3. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693–733.

    Article  CAS  PubMed  Google Scholar 

  4. Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 2006; 25:6685–705.

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 2008; 9:536–42.

    Article  CAS  PubMed  Google Scholar 

  6. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550–63.

    Article  CAS  PubMed  Google Scholar 

  7. Jackson PK, Eldridge AG. The SCF ubiquitin ligase: an extended look. Mol Cell 2002; 9:923–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006; 25:6706–16.

    Article  CAS  PubMed  Google Scholar 

  9. Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitinationdependent protein kinase activity. Cell 1996; 84:853–62.

    Article  CAS  PubMed  Google Scholar 

  10. Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature 2009; 458:430–7.

    Article  CAS  PubMed  Google Scholar 

  11. Tokunaga F, Sakata S, Saeki Y et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009; 11:123–32.

    Article  CAS  PubMed  Google Scholar 

  12. Lo YC, Lin SC, Rospigliosi CC et al. Structural basis for recognition of diubiquitins by NEMO. Mol Cell 2009; 33:602–15.

    Article  CAS  PubMed  Google Scholar 

  13. Rahighi S, Ikeda F, Kawasaki M et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009; 136:1098–109.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshikawa A, Sato Y, Yamashita M et al. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 2009; 583:3317–22.

    Article  CAS  PubMed  Google Scholar 

  15. Laplantine E, Fontan E, Chiaravalli J et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 2009; 28:2885–95.

    Article  CAS  PubMed  Google Scholar 

  16. Besse A, Lamothe B, Campos AD et al. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 2007; 282:3918–28.

    Article  CAS  PubMed  Google Scholar 

  17. Ishitani T, Takaesu G, Ninomiya-T suji J et al. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 2003; 22:6277–88.

    Article  CAS  PubMed  Google Scholar 

  18. Kanayama A, Seth RB, Sun L et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535–48.

    Article  CAS  PubMed  Google Scholar 

  19. Sato S, Sanjo H, Takeda K et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6:1087–95.

    Article  CAS  PubMed  Google Scholar 

  20. Shim JH, Xiao C, Paschal AE et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19:2668–81.

    Article  CAS  PubMed  Google Scholar 

  21. Wan YY, Chi H, Xie M et al. The kinase TAK1 integrates antigen and cytokine receptor signaling for T-cell development, survival and function. Nat Immunol 2006; 7:851–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Deng L, Hong M et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412:346–51.

    Article  CAS  PubMed  Google Scholar 

  23. Xia ZP, Sun L, Chen X et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461:114–9.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Qin J. Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med 2005; 83:258–66.

    Article  CAS  PubMed  Google Scholar 

  25. Xu M, Skaug B, Zeng W et al. A Ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 2009; 36:302–14.

    Article  CAS  PubMed  Google Scholar 

  26. Deng L, Wang C, Spencer E et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103:351–61.

    Article  CAS  PubMed  Google Scholar 

  27. Lomaga MA, Yeh WC, Sarosi I et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40 and LPS signaling. Genes Dev 1999; 13:1015–24.

    Article  CAS  PubMed  Google Scholar 

  28. Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004; 16:3–9.

    Article  CAS  PubMed  Google Scholar 

  29. Park YC, Burkitt V, Villa AR et al. Structural basis for self-association and receptor recognition of human TRAF2. Nature 1999; 398:533–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yin Q, Lin SC, Lamothe B et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 2009; 16:658–66.

    Article  CAS  PubMed  Google Scholar 

  31. Conze DB, Wu CJ, Thomas JA et al. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor-and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 2008; 28:3538–47.

    Article  CAS  PubMed  Google Scholar 

  32. Windheim M, Stafford M, Peggie M et al. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 2008; 28:1783–91.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto M, Okamoto T, Takeda K et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962–70.

    Article  CAS  PubMed  Google Scholar 

  34. Bidere N, Snow AL, Sakai K et al. Caspase-8 regulation by direct interaction with TRAF6 in T-cell receptor-induced NF-kappaB activation. Curr Biol 2006; 16:1666–71.

    Article  CAS  PubMed  Google Scholar 

  35. Oeckinghaus A, Wegener E, Welteke V et al. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J 2007; 26:4634–45.

    Article  CAS  PubMed  Google Scholar 

  36. Sun L, Deng L, Ea CK et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T-lymphocytes. Mol Cell 2004; 14:289–301.

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto M, Sato S, Saitoh T et al. Cutting Edge: Pivotal function of Ubc13 in thymocyte TCR signaling. J Immunol 2006; 177:7520–4.

    CAS  PubMed  Google Scholar 

  38. King CG, Kobayashi T, Cejas PJ et al. TRAF6 is a T-cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med 2006; 12:1088–92.

    Article  CAS  PubMed  Google Scholar 

  39. Wu CJ, Ashwell JD. NEMO recognition of ubiquitinated Bcl10 is required for T-cell receptor-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105:3023–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hu S, Du MQ, Park SM, et al cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. J Clin Invest 2006; 116:174–81.

    Article  CAS  PubMed  Google Scholar 

  41. Reiley WW, Jin W, Lee AJ et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T-cell responses. J Exp Med 2007; 204:1475–85.

    Article  CAS  PubMed  Google Scholar 

  42. Sorrentino A, Thakur N, Grimsby S et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008; 10:1199–207.

    Article  CAS  PubMed  Google Scholar 

  43. Ea CK, Deng L, Xia ZP et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22:245–57.

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Kobayashi M, Blonska M et al. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 2006; 281:13636–43.

    Article  CAS  PubMed  Google Scholar 

  45. Wu CJ, Conze DB, Li T et al. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 2006; 8:398–406.

    Article  CAS  PubMed  Google Scholar 

  46. Funakoshi-T ago M, Kamada N, Shimizu T et al. TRAF6 negatively regulates TNFalpha-induced NF-kappaB activation. Cytokine 2009; 45:72–9.

    Article  CAS  PubMed  Google Scholar 

  47. Tada K, Okazaki T, Sakon S et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 2001; 276:36530–4.

    Article  CAS  PubMed  Google Scholar 

  48. Yin Q, Lamothe B, Darnay BG et al. Structural Basis for the Lack of E2 Interaction in the RING Domain of TRAF2. Biochemistry 2009.

    Google Scholar 

  49. Mahoney DJ, Cheung HH, Mrad RL et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105:11778–83.

    Article  CAS  PubMed  Google Scholar 

  50. Varfolomeev E, Goncharov T, Fedorova AV, et al c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283:24295–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bignell GR, Warren W, Seal S et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000; 25:160–5.

    Article  CAS  PubMed  Google Scholar 

  52. Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424:797–801.

    Article  CAS  PubMed  Google Scholar 

  53. Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424:801–5.

    Article  CAS  PubMed  Google Scholar 

  54. Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424:793–6.

    Article  CAS  PubMed  Google Scholar 

  55. Jin W, Chang M, Paul EM et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 2008; 118:1858–66.

    Article  CAS  PubMed  Google Scholar 

  56. Wright A, Reiley WW, Chang M et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 2007; 13:705–16.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshida H, Jono H, Kai H et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem 2005; 280:41111–21.

    Article  CAS  PubMed  Google Scholar 

  58. Komander D, Lord CJ, Scheel H et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451–64.

    Article  CAS  PubMed  Google Scholar 

  59. Komander D, Reyes-Turcu F, Licchesi JD et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466–73.

    Article  CAS  PubMed  Google Scholar 

  60. Jono H, Lim JH, Chen LF et al. NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 2004; 279:36171–4.

    Article  CAS  PubMed  Google Scholar 

  61. Hutti JE, Shen RR, Abbott DW et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell 2009; 34:461–72.

    Article  CAS  PubMed  Google Scholar 

  62. Reiley W, Zhang M, Wu X et al. Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase gamma-dependent phosphorylation. Mol Cell Biol 2005; 25:3886–95.

    Article  CAS  PubMed  Google Scholar 

  63. Massoumi R, Chmielarska K, Hennecke K et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125:665–77.

    Article  CAS  PubMed  Google Scholar 

  64. Reiley WW, Zhang M, Jin W et al. Regulation of T-cell development by the deubiquitinating enzyme CYLD. Nat Immunol 2006; 7:411–7.

    Article  CAS  PubMed  Google Scholar 

  65. Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60.

    Article  CAS  PubMed  Google Scholar 

  66. Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4.

    Article  CAS  PubMed  Google Scholar 

  67. Turer EE, Tavares RM, Mortier E et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J Exp Med 2008; 205:451–64.

    Article  CAS  PubMed  Google Scholar 

  68. Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9.

    Article  CAS  PubMed  Google Scholar 

  69. Shembade N, Harhaj NS, Parvatiyar K et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9:254–62.

    Article  CAS  PubMed  Google Scholar 

  70. Shembade N, Parvatiyar K, Harhaj NS et al. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28:513–22.

    Article  CAS  PubMed  Google Scholar 

  71. Stilo R, Varricchio E, Liguoro D et al. A20 is a negative regulator of BCL10-and CARMA3-mediated activation of NF-kappaB. J Cell Sci 2008; 121:1165–71.

    Article  CAS  PubMed  Google Scholar 

  72. Komander D, Barford D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J 2008; 409:77–85.

    Article  CAS  PubMed  Google Scholar 

  73. Lin SC, Chung JY, Lamothe B et al. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. J Mol Biol 2008; 376:526–40.

    Article  CAS  PubMed  Google Scholar 

  74. Werner SL, Kearns JD, Zadorozhnaya V et al. Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes Dev 2008; 22:2093–101.

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Hailey DW, Soetandyo N et al. Localization of A20 to a lysosome-associated compartment and its role in NFkappaB signaling. Biochim Biophys Acta 2008; 1783:1140–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hutti JE, Turk BE, Asara JM et al. IkappaB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-kappaB pathway. Mol Cell Biol 2007; 27:7451–61.

    Article  CAS  PubMed  Google Scholar 

  77. Coornaert B, Baens M, Heyninck K et al. T-cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 2008; 9:263–71.

    Article  CAS  PubMed  Google Scholar 

  78. Duwel M, Welteke V, Oeckinghaus A et al. A20 negatively regulates T-cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182:7718–28.

    Article  PubMed  CAS  Google Scholar 

  79. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30:383–91.

    Article  CAS  PubMed  Google Scholar 

  80. Compagno M, Lim WK, Grunn A et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459:717–21.

    Article  CAS  PubMed  Google Scholar 

  81. Kato M, Sanada M, Kato I et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459:712–6.

    Article  CAS  PubMed  Google Scholar 

  82. Ferch U, Kloo B, Gewies A et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2009; 206:2313–20.

    Article  CAS  PubMed  Google Scholar 

  83. Evans PC, Taylor ER, Coadwell J et al. Isolation and characterization of two novel A20-like proteins. Biochem J 2001; 357:617–23.

    Article  CAS  PubMed  Google Scholar 

  84. Enesa K, Zakkar M, Chaudhury H et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283:7036–45.

    Article  CAS  PubMed  Google Scholar 

  85. Schweitzer K, Bozko PM, Dubiel W et al. CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J 2007; 26:1532–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Krappmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Düwel, M., Hadian, K., Krappmann, D. (2010). Ubiquitin Conjugation and Deconjugation in NF-κB Signaling. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_7

Download citation

Publish with us

Policies and ethics