Skip to main content

Mechanism, Specificity and Structure of the Deubiquitinases

  • Chapter
Conjugation and Deconjugation of Ubiquitin Family Modifiers

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

Removal of ubiquitin from modified proteins is an important process to regulate the ubiquitin system. Roughly 100 dedicated enzymes for this purpose, the deubiquitinases, exist in human cells and are intricately involved in a wide variety of cellular processes, although many enzymes remain unstudied to date. The deubiquitinases consist of five enzyme families that contain USP, OTU, UCH, Josephin, or JAMM/MPN+ domains providing catalytic activity. We now understand the catalytic mechanisms of all deubiquitinase families from structural work and more importantly, have obtained insight into an unanticipated variety of ways to exercise specificity. It emerges that deubiquitinases exploit the entire complexity of the ubiquitin system by recognizing their substrates, particular ubiquitin chain linkages and even the position within a ubiquitin chain. This chapter describes the mechanisms of deubiquitination and the different layers of deubiquitinase specificity. The individual deubiquitinase families are discussed with a focus on structure, regulation and specificity features for selected enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425–79.

    Article  CAS  PubMed  Google Scholar 

  2. Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33:275–86.

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 2008; 9:536–42.

    Article  CAS  PubMed  Google Scholar 

  4. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009; 37:937–53.

    Article  CAS  PubMed  Google Scholar 

  5. Kirisako T, Kamei K, Murata S et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877–87.

    Article  CAS  PubMed  Google Scholar 

  6. Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773–86.

    Article  CAS  PubMed  Google Scholar 

  7. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550–63.

    Article  CAS  PubMed  Google Scholar 

  8. Burrows JF, McGrattan MJ, Johnston JA. The DUB/USP17 deubiquitinating enzymes, a multigene family within a tandemly repeated sequence. Genomics 2005; 85:524–9.

    Article  CAS  PubMed  Google Scholar 

  9. Amerik A, Swaminathan S, Krantz BA et al. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 1997; 16:4826–38.

    Article  CAS  PubMed  Google Scholar 

  10. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477–513.

    Article  CAS  PubMed  Google Scholar 

  11. Popov N, Wanzel M, Madiredjo M et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 2007; 9:765–74.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Zaugg K, Mak TW et al. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006; 126:529–42.

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Brooks CL, Kon N et al. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 2004; 13:879–86.

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Chen D, Shiloh A et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002; 416:648–53.

    Article  CAS  PubMed  Google Scholar 

  15. Biggs PJ, Wooster R, Ford D et al. Familial cylindromatosis (turban tumour syndrome) gene localised to chromosome 16q12–q13: evidence for its role as a tumour suppressor gene. Nat Genet 1995; 11:441–3.

    Article  CAS  PubMed  Google Scholar 

  16. Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424:797–801.

    Article  CAS  PubMed  Google Scholar 

  17. Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424:801–5.

    Article  CAS  PubMed  Google Scholar 

  18. Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424:793–6.

    Article  CAS  PubMed  Google Scholar 

  19. Komander D, Lord CJ, Scheel H et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451–64.

    Article  CAS  PubMed  Google Scholar 

  20. Komander D, Reyes-Turcu F, Licchesi JD et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466–73.

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda F, Dikic I. CYLD in ubiquitin signaling and tumor pathogenesis. Cell 2006; 125:643–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sun SC. CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 2010; 17:25–34.

    Article  CAS  PubMed  Google Scholar 

  23. Malynn BA, Ma A. A20 takes on tumors:tumor suppression by an ubiquitin-editing enzyme. J Exp Med 2009; 206:977–80.

    Article  CAS  PubMed  Google Scholar 

  24. Wertz I, O’Rourke K, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528–42.

    Article  CAS  PubMed  Google Scholar 

  26. Kayagaki N, Phung Q, Chan S et al. DUBA: A Deubiquitinase That Regulates Type I Interferon Production. Science 2007; 318:1628–32.

    Article  CAS  PubMed  Google Scholar 

  27. Reyes-Turcu FE, Ventii KH et al. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363–97.

    Article  CAS  PubMed  Google Scholar 

  28. Reyes-Turcu FE, Wilkinson KD. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Chem Rev 2009; 109:1495–508.

    Article  CAS  PubMed  Google Scholar 

  29. Storer AC, Menard R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol 1994; 244:486–500.

    Article  CAS  PubMed  Google Scholar 

  30. Johnston SC, Larsen CN, Cook WJ et al. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J 1997; 16:3787–96.

    Article  CAS  PubMed  Google Scholar 

  31. Borodovsky A, Ovaa H, Kolli N et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 2002; 9:1149–59.

    Article  CAS  PubMed  Google Scholar 

  32. Love KR, Catic A, Schlieker C et al. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 2007; 3:697–705.

    Article  CAS  PubMed  Google Scholar 

  33. Hershko A, Rose IA. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc Natl Acad Sci USA 1987; 84:1829–33.

    Article  CAS  PubMed  Google Scholar 

  34. Love KR, Pandya RK, Spooner E et al. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. ACS Chem Biol 2009; 4:275–87.

    Article  PubMed  CAS  Google Scholar 

  35. Hu M, Li P, Li M et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 2002; 111:1041–54.

    Article  CAS  PubMed  Google Scholar 

  36. Johnston SC, Riddle SM, Cohen RE et al. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 1999; 18:3877–87.

    Article  CAS  PubMed  Google Scholar 

  37. Messick TE, Russell NS, Iwata AJ et al. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J Biol Chem 2008; 283:11038–49.

    Article  CAS  PubMed  Google Scholar 

  38. Edelmann MJ, Iphofer A, Akutsu M et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 2009; 418:379–90.

    Article  CAS  PubMed  Google Scholar 

  39. Maytal-Kivity V, Reis N, Hofmann K et al. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 2002; 3:28.

    Article  PubMed  Google Scholar 

  40. Tran HJ, Allen MD, Lowe J et al. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 2003; 42:11460–5.

    Article  CAS  PubMed  Google Scholar 

  41. Sato Y, Yoshikawa A, Yamagata A et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 2008; 455:358–62.

    Article  CAS  PubMed  Google Scholar 

  42. Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature 2009; 458:422–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 2007; 36:131–50.

    Article  CAS  PubMed  Google Scholar 

  44. Iwai K, Tokunaga F. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 2009; 10:706–13.

    Article  CAS  PubMed  Google Scholar 

  45. Huang TT, Nijman SM, Mirchandani KD et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 2006; 8:339–47.

    CAS  PubMed  Google Scholar 

  46. Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 1998; 27:133–64.

    Article  CAS  PubMed  Google Scholar 

  47. Hu M, Li P, Song L et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 2005; 24:3747–56.

    Article  CAS  PubMed  Google Scholar 

  48. Newton K, Matsumoto ML, Wertz IE et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668–78.

    Article  CAS  PubMed  Google Scholar 

  49. Sowa ME, Bennett EJ, Gygi SP et al. Defining the Human Deubiquitinating Enzyme Interaction Landscape. Cell 2009; 138:389–403.

    Article  CAS  PubMed  Google Scholar 

  50. Hassink GC, Zhao B, Sompallae R et al. The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep 2009; 10:755–61.

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 2008; 19:1903–11.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu X, Menard R, Sulea T. High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 2007; 69:1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Avvakumov GV, Walker JR, Xue S et al. Amino-terminal dimerization, NRDP1-rhodanese interaction and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J Biol Chem 2006; 281:38061–70.

    Article  CAS  PubMed  Google Scholar 

  54. Komander D, Barford D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J 2008; 409:77–85.

    Article  CAS  PubMed  Google Scholar 

  55. Catic A, Fiebiger E, Korbel GA et al. Screen for ISG15-crossreactive deubiquitinases. PLoS ONE 2007; 2:e679.

    Article  PubMed  CAS  Google Scholar 

  56. Nicholson B, Leach CA, Goldenberg SJ et al. Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci 2008; 17:1035–43.

    Article  CAS  PubMed  Google Scholar 

  57. Ye Y, Scheel H, Hofmann K et al. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst 2009; 5:1797–808.

    Article  CAS  PubMed  Google Scholar 

  58. Reyes-Turcu FE, Shanks JR et al. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem 2008; 283:19581–92.

    Article  CAS  PubMed  Google Scholar 

  59. Cohn MA, Kee Y, Haas W et al. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem 2009; 284:5343–51.

    Article  CAS  PubMed  Google Scholar 

  60. Cohn MA, Kowal P, Yang K et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 2007; 28:786–97.

    Article  CAS  PubMed  Google Scholar 

  61. Stegmeier F, Rape M, Draviam VM et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446:876–81.

    Article  CAS  PubMed  Google Scholar 

  62. Enesa K, Zakkar M, Chaudhury H et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283:7036–45.

    Article  CAS  PubMed  Google Scholar 

  63. Nanao M, Tcherniuk S, Chroboczek J et al. Crystal structure of human otubain 2. EMBO Rep 2004; 5:783–8.

    Article  CAS  PubMed  Google Scholar 

  64. Enesa K, Ito K, Luong le A et al. Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 2008; 283:18582–90.

    Article  CAS  PubMed  Google Scholar 

  65. Lin SC, Chung JY, Lamothe B et al. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. J Mol Biol 2008; 376:526–40.

    Article  CAS  PubMed  Google Scholar 

  66. Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int 2007; 51:105–11.

    Article  CAS  PubMed  Google Scholar 

  67. Wood MA, Kaplan MP, Brensinger CM et al. Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus 2005; 15:610–21.

    Article  CAS  PubMed  Google Scholar 

  68. Semenova E, Wang X, Jablonski MM et al. An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum Mol Genet 2003; 12:1301–12.

    Article  CAS  PubMed  Google Scholar 

  69. Leroy E, Boyer R, Auburger G et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395:451–2.

    Article  CAS  PubMed  Google Scholar 

  70. Yao T, Song L, Xu W et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8:994–1002.

    Article  CAS  PubMed  Google Scholar 

  71. Qiu XB, Ouyang SY, Li CJ et al hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 2006; 25:5742–53.

    Article  CAS  PubMed  Google Scholar 

  72. Hamazaki J, Iemura S, Natsume T et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 2006; 25:4524–36.

    Article  CAS  PubMed  Google Scholar 

  73. Jensen DE, Proctor M, Marquis ST et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 1998; 16:1097–112.

    Article  CAS  PubMed  Google Scholar 

  74. Nishikawa H, Wu W, Koike A et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 2009; 69:111–9.

    Article  CAS  PubMed  Google Scholar 

  75. Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 2002; 21:6755–62.

    Article  CAS  PubMed  Google Scholar 

  76. Misaghi S, Ottosen S, Izrael-Tomasevic A et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 2009; 29:2181–92.

    Article  CAS  PubMed  Google Scholar 

  77. Ventii KH, Devi NS, Friedrich KL et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 2008; 68:6953–62.

    Article  CAS  PubMed  Google Scholar 

  78. Das C, Hoang QQ, Kreinbring CA et al. Structural basis for conformational plasticity of the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA 2006; 103:4675–80.

    Article  CAS  PubMed  Google Scholar 

  79. Misaghi S, Galardy PJ, Meester WJ et al. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J Biol Chem 2005; 280:1512–20.

    Article  CAS  PubMed  Google Scholar 

  80. Popp MW, Artavanis-T sakonas K, Ploegh HL. Substrate Filtering by the Active Site Crossover Loop in UCHL3 Revealed by Sortagging and Gain-of-function Mutations. J Biol Chem 2009; 284:3593–602.

    Article  CAS  PubMed  Google Scholar 

  81. Lam YA, Xu W, DeMartino GN et al. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997; 385:737–40.

    Article  CAS  PubMed  Google Scholar 

  82. Setsuie R, Sakurai M, Sakaguchi Y et al. Ubiquitin dimers control the hydrolase activity of UCH-L3. Neurochem Int 2009; 54:314–21.

    Article  CAS  PubMed  Google Scholar 

  83. Scheel H, Tomiuk S, Hofmann K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet 2003; 12:2845–52.

    Article  CAS  PubMed  Google Scholar 

  84. Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 2003; 12:3195–205.

    Article  CAS  PubMed  Google Scholar 

  85. Riess O, Rub U, Pastore A et al. SCA3: neurological features, pathogenesis and animal models. Cerebellum 2008; 7:125–37.

    Article  CAS  PubMed  Google Scholar 

  86. Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008; 31:521–8.

    Article  CAS  PubMed  Google Scholar 

  87. Mao Y, Senic-Matuglia F, Di Fiore PP et al. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA 2005; 102:12700–5.

    Article  CAS  PubMed  Google Scholar 

  88. Nicastro G, Menon RP, Masino L et al. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 2005; 102:10493–8.

    Article  CAS  PubMed  Google Scholar 

  89. Nicastro G, Habeck M, Masino L et al. Structure validation of the Josephin domain of ataxin-3: conclusive evidence for an open conformation. J Biomol NMR 2006; 36:267–77.

    Article  CAS  PubMed  Google Scholar 

  90. Nicastro G, Masino L, Esposito V et al. The josephin domain of ataxin-3 contains two distinct ubiquitin binding sites. Biopolymers 2009; 91:1203–14.

    Article  CAS  PubMed  Google Scholar 

  91. Todi SV, Winborn BJ, Scaglione KM et al. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 2009; 28:372–82.

    Article  CAS  PubMed  Google Scholar 

  92. Berke SJ, Chai Y, Marrs GL et al. Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J Biol Chem 2005; 280:32026–34.

    Article  CAS  PubMed  Google Scholar 

  93. Sims JJ, Cohen RE. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 2009; 33:775–83.

    Article  CAS  PubMed  Google Scholar 

  94. Winborn BJ, Travis SM, Todi SV et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 2008; 283:26436–43.

    Article  CAS  PubMed  Google Scholar 

  95. Williams RL, Urbe S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 2007; 8:355–68.

    Article  CAS  PubMed  Google Scholar 

  96. Cooper EM, Cutcliffe C, Kristiansen TZ et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 2009; 28:621–31.

    Article  CAS  PubMed  Google Scholar 

  97. Shao G, Lilli DR, Patterson-Fortin J et al. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci USA 2009; 106:3166–71.

    Article  CAS  PubMed  Google Scholar 

  98. Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/ Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA 2007; 104:20759–63.

    Article  CAS  PubMed  Google Scholar 

  99. Dong Y, Hakimi MA, Chen X et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 2003; 12:1087–99.

    Article  CAS  PubMed  Google Scholar 

  100. Cope GA, Suh GS, Aravind L et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 2002; 298:608–11.

    Article  CAS  PubMed  Google Scholar 

  101. Zhu P, Zhou W, Wang J et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 2007; 27:609–21.

    Article  CAS  PubMed  Google Scholar 

  102. Pena V, Liu S, Bujnicki JM et al. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell 2007; 25:615–24.

    Article  CAS  PubMed  Google Scholar 

  103. McCullough J, Clague MJ, Urbe S. AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 2004; 166:487–92.

    Article  CAS  PubMed  Google Scholar 

  104. Xu P, Duong DM, Seyfried NT et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137:133–45.

    Article  CAS  PubMed  Google Scholar 

  105. Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921–6.

    Article  CAS  PubMed  Google Scholar 

  106. Shanmugham A, Ovaa H. DUBs and disease: activity assays for inhibitor development. Curr Opin Drug Discov Devel 2008; 11:688–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Komander, D. (2010). Mechanism, Specificity and Structure of the Deubiquitinases. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_6

Download citation

Publish with us

Policies and ethics